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describe atomic interactions during the relaxation of nanostructures. To include

the quantum mechanical nature of atomic bonding a tight-binding based bond order 

potential (BOP) is developed applying analytically the first six moments. The 

BOP is improved using new on-site and $\pi$-terms of the local density of states. 

The applicability of the bond order potential and 

resulting enhancements in structural predictions are analyzed recalculating quantum dot 

relaxations and interface defects arising during bonding of two wafers with twist 

rotation misalignment. The most important property proposed by the extended BOP

is an increased stiffness of the bonds which give modifications of local atomic

arrangements near defects.
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Relaxation of Semiconductor Nanostructures using

Molecular Dynamics with Analytic Bond Order Potentials⋆

Kurt Scheerschmidt and Volker Kuhlmann

Max Planck Institute of Microstructure Physics,
Weinberg 2, D-06120 Halle, Germany
Email: schee@mpi-halle.de

Dedicated to Prof. Dr. H. Fischmeister on the occasion of his 80th birthday

Summary. Molecular dynamics simulations using empirical potentials have been performed to describe
atomic interactions during the relaxation of nanostructures. To include the quantum mechanical nature of
atomic bonding a tight-binding based bond order potential (BOP) is developed applying analytically the
first six moments. The BOP is improved using new on-site and π-terms of the local density of states. The
applicability of the bond order potential and resulting enhancements in structural predictions are analyzed
recalculating quantum dot relaxations and interface defects arising during bonding of two wafers with
twist rotation misalignment. The most important property proposed by the extended BOP is an increased
stiffness of the bonds which give modifications of local atomic arrangements near defects.

1.1 Introduction

Molecular dynamics (MD) simulations [2] have been performed to study atomic processes related
to the reordering at interfaces [3] and relaxation of nanostructures [4]. To enhance MD, we use the
bond order potential (BOP) based on the tight binding (TB) model, as it preserves the essential
quantum mechanical nature of atomic bonding. Just like ab initio methods, TB calculations require
complete diagonalisation of the Hamiltonian, which scales as O(N3) and restricts simulations to
a few thousand atoms. The analytic BOP, however, achieves O(N) scaling by diagonalizing the
orthogonal TB-Hamiltonian approximately and is recognized as a fast and accurate model for
atomic interaction [5, 6, 7]. It allows to explore the dynamics of systems on macroscopic time and
length scales on the atomic level that are beyond the realm of ab initio calculations. Such enhanced
empirical TB based potentials make a sufficiently large number of particles and relaxation times
up to µs accessible by MD including the electronic structure and the nature of the covalent bonds
indirectly. The enhancement of the BOP is described in detail in [8, 9] and summarized in chapter
1.2. The ability of the BOP based MD is demonstrated here by comparing relaxations of quantum
dots (cf. chapter 1.3) and interface structures (cf. chapter 1.4) with those using Tersoff potentials.

⋆ Extended contribution published at MMM2006[1]
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2 Kurt Scheerschmidt, Volker Kuhlmann

1.2 Analytic bond order potentials up to six moments

The approximations to develop analytic BOP potentials from DFT may be summarized by the
following steps (for details cf. [5, 6, 7] and for the extensions cf. [8, 9]): construct the TB matrix
elements by Slater-Koster two-centre integrals including s- and p- orbitals, transform the matrix
to the bond representation, replace the diagonalization by Lanczos recursion, obtain the momenta
from the continued fraction representation of the Green function up to order n for an analytic
BOPn potential. The total cohesive potential energy Ucoh has three contributions: pair repulsion,
promotion energy Uprom, and bond energy as excess of the band energy over the individual atomic
interactions Ubond = 2

∑

iα,jβΘjβ,iαHiα,jβ . In the BOP representation the matrix elements Hiα,jβ

are replaced by the Slater-Koster two-center integrals hij and the Goodwin-Skinner-Pettifor dis-
tance scaling function. The bond order Θiσ,jσ is equivalent to the electron density for which a

concise analytical expression
[

1 +
N2(Φi

2σ+Φj

2σ
)+Φi

2σΦj

2σ
(2N+△Φ4σ)

(N+△Φ4σ)2

]−1/2

can be given that employs

the normalized second and fourth moment (Φ2σ, Φ4σ) of the local density of electronic states and
△Φ4σ = (Φi

4σ + Φj
4σ − Φi2

2σ − Φj2
2σ)/(Φi

2σ + Φj
2σ), N2 = △Φ4σ + Φi

2σΦj
2σ. The normalized second

moment was given as a sum of intersite and on-site hopping terms

Φi
2σ =

∑

k(i) 6=j

g2
σ,jikβ̂2

σ,ik + δ̂2
i , (1.1)

the latter beeing proportional to the energy splitting between atomic s- and p-states,

δ̂2
i = pσ,i(1 − pσ,i)(Es − Ep)

2/β2
σ,ij . (1.2)

The contribution Φ4σ to the 4th moment was given in terms of the matrix-elements of the tight
binding Hamiltonian,

Φi
4σ =

∑

k(i) 6=j

β̂4
ikg2

jik +
∑

k(i) 6=j

l(k) 6=i,j

β̂2
ikβ̂2

klg
2
jikg2

ikl +
∑′

k(i),l(i) 6=j

β̂2
ikβ̂2

ilgjikgkilgil, (1.3)

with the bond angle θjik, the angular function

gσ,jik = 1 + (cos θjik − 1)pσ,i, (1.4)

reduced TB-parameters

pσ,i =
ppσii

|ssσii| + ppσii

, (1.5)

and normalized hopping integrals according β̂ik = βik/βij etc.
The resulting semi-empirical many body potential is transferable to describe phases and con-

figurations not included in the parameter fit, a feature not found with other empirical potentials.
Moreover, transferability extends to different kinds of materials, where only the parameter need to
be refitted. In the implementation of the enhanced BOP4+ a number of angular terms are included
that are related to certain π bonds between neighboring atoms and contribute up to 40%, but were
neglected previously. Both contributions exhibit new angular dependencies, different from those
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1 BOP in MD of Nanostructures 3

already accounted for in the expressions given in [5] and the second order BOP2 [10, 11]. With the
torsional function

gϕ,jl = pπ,ik
√

pσ,ipσ,k cosϕjl sin θjik sin θikl, (1.6)

this contribution reads
∑

k(i) 6=j

∑

l(k) 6=i,j

β̂2
σ,ikβ̂2

σ,kl [2gσ,jikgσ,ikl + gϕ,jl] gϕ,jl. (1.7)

Similarly on-site contributions to Φ4σ proportional to the energy splitting δi are included:
∑

β̂2
ik

{

gjik(2δ̂2
i + δ̂2

k) + p̂i(1 − p̂i)δ̂
2
i (1 − θjik)2

}

+ δ̂4
i . (1.8)

Besides an accurate fit, the BOP requires well parameterized TB matrix elements or parameter
optimizing, and the problem of transferability have to be considered separately. For BOP of order
n = 2 [10, 11] the bond-order term looks like a Tersoff potential and the numerical behavior of
BOP2 and the empirical Tersoff potential are approximately equivalent. A detailed description
of the enhanced analytical BOP4+ is given elsewhere [8, 9], together with the derivation of the
individual terms and their importance to better describe the electronic origin for angular dependend
bonding.

(a) (b)

Fig. 1.1. MD relaxation of an SiGe/Si island: (a) Potential and total energy during annealing up to 900K,
inset: enlarged first 1000 steps relaxing start configuration at 0K, (b) [110] views after annealing with a
Tersoff potential (top) and an analytical BOP4+ (bottom).

1.3 BOP4+ in MD relaxation of quantum dots

A quantum dot (QD) is a nanometer scaled island or region of suitable material free-standing on
or embedded in semiconductor or other matrices. Especially shape, size and strain field of single
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4 Kurt Scheerschmidt, Volker Kuhlmann

QDs as well as quality, density, and homogeneity of equisized and equishaped dot arrangements are
important features which control the optical properties, the emission and absorption of light, the
lasing efficiency, etc. MD with suitable potentials allows to describe the relaxation and to predict
structural properties of QDs.

Fig. 1.1 (a) shows the behavior of the potential and the total energy of a SiGe/Si-island and
Fig. 1.1 (b) the structural difference after relaxing the system up to 900K with Tersoff and BOP4+
potentials, respectively. Due to the different nearest and next nearest neighbor relations - hopping
matrix elements up to 6th order - the better stiffness of the BOP4+ yields better structural stability.

Fig. 1.2. MD relaxation up to 900K of an embedded SiGe pyramid in Si comparing Tersoff and BOP4+
potentials: (a) Relaxed atom positions for Tersoff (Si yellow, Ge red) and BOP4+ (Si green, Ge blue) with
an slight overall shift to separate the 110-dumbbell rows, (b) pair distribution, and (c) distribution of the
torsion angles.

Fig. 1.2 (a) shows the difference in lattice plane bending comparing the atomic positions after
annealing an embedded truncated (001)-SiGe/Si quantum dot of pyramidal shape having 111
faccettes. The different bending of the atomic rows is demonstrated using different colors for Si and
Ge after applying the Tersoff potential (yellow/red, resp.) and the enhanced BOP4+ (green/blue,
resp.). Thus different strains are created especially within the QD, which also is reflected by the
pair distribution in Fig. (b). The torsion angle distribution in Fig. (c), however, shows solely a
sharper maximum around the 60◦ equilibrium angle indicating the higher stffness of the BOP4+.

1.4 BOP4+ in MD investigations of wafer bonded interfaces

Wafer bonding, i.e. the creation of interfaces by joining two wafer surfaces, has become an attractive
method for many practical applications in microelectronics, micromechanics or optoelectronics. The
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1 BOP in MD of Nanostructures 5

macroscopic properties of bonded materials are mainly determined by the atomic processes at the
interfaces during the transition from adhesion to chemical bonding. Thus, the description of the
atomic processes is of increasing interest to support the experimental investigations or to predict
the bonding behavior. Whereas bonding of two perfectly aligned, identical wafers yields a single,

(a) (b)

Fig. 1.3. MD simulated structural models of bonded wafers ([001] views, bond representation of 3 lattice
planes around the interface) with rotationally 2.8◦ twist angles (134500 atoms, 22nm box) annealed at
900K for orthogonal dimer start configurations: (a) Tersoff potential; (b) BOP4+ potential.

perfectly bonded wafer without defects, miscut of the wafer results in steps on the wafer surfaces
and thus edge dislocations at the bonded interfaces are created. Bonding wafers with rotational
twist leads additionally to a network of screw dislocations at the interface, in dependence of the
twist angle different bonding behavior is observed as discussed in detail, e.g., in [12]. A special
situation is the 90◦ twist, e.g. between monoatomic steps, giving a (2x2) reconstructed interface
and consisting of structural units called the 42m-dreidl [13, 14, 15]. The dreidl structure is found
to be also the minimum energy configuration in DFT-LDA simulations. All interface relaxations,
however, are strongly influenced by the atomic potential model used, as it is demonstrated in
Figs. 1.3-1.6 comparing MD interface simulations with Tersoff and BOP4+, respectively. Figs. 1.3
and 1.4 show the resulting minimum structures gained for higher annealing temperatures (900K) of
a wafer bonded interface with a twist rotation of 2.8◦. The [001]-projections of the bonds normal
to the bonded interface up to next nearest neighbors is given in Figs. 1.3 (a) and (b) for the
MD relaxation with Tersoff and BOP4+ potentials, respectively. In Fig. 1.4 the [110] projection
is shown, with both the Tersoff and the BOP4+ simulation projected by different colors into the
same view. One reveals the more located imperfectly bonded regions around the screw dislocations
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6 Kurt Scheerschmidt, Volker Kuhlmann

Fig. 1.4. MD relaxation of bonding rotationally twisted wafers ([110] view) with 2.8◦ angle, 22nm box,
orthogonal dimers: structural difference using Tersoff (green) and BOP4+ potentials (red).

for the Tersoff potential, whereas the relaxation with BOP4+ yield more stability due to the
higher potential stiffness according to the 6th moment hopping terms. Finally, in Fig. 1.5 the pair-,
bond angle-, and torsion angle distributions are shown for the 2.8◦-twist bonded interface, only
3 lattice planes around the interface are considered in distance and angle counting. The Tersoff
potential yields the characteristic first and second neighbor distances as well as the bond angle
of 109◦. The calculation with the BOP4+ demonstrates the characteristic deviations due to the
better description of the electronic bond structure. So, for instance, the Tersoff potential is defined
without torsion, thus the corresponding distribution in Fig. 1.5 (c) has no relevant peaks. However,
the angular distribution Fig. 1.5 (b) shows remarkable maxima at 95◦ and 125◦.

(a) (b) (c)

Fig. 1.5. Distribution functions for MD simulated structural models of bonded wafers with rotationally
twist angle of 2.8◦ annealed at 900K assuming Tersoff potential (blue) and BOP4+ potential (red): (a)
radial distribution function, (b) bond angles, and (c) torsion angles.

Fig.1.6 shows the interface region after bonding of 8.8◦ rotationally twisted (001)-Si wafers. The
annealing at 900K rearranges the atomic configurations at the interfaces to screw dislocations with
overlapping core regions, thus the atomic rows at the interface are bended nearly across the whole
wafer. Contrary to the results for the 2.8◦ twist boundary, the peak of the pair distribution on the
right hand side of Fig.1.6 is sharpened for the BOP4+ potential. Thus here for the overlapping
core regions of the screw dislocations the higher stiffness of the potential yield a better relaxation
of the bonded interface.
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1 BOP in MD of Nanostructures 7

Fig. 1.6. MD relaxation of bonding rotationally twisted wafers with 8.8◦ angle, 11nm box, orthogonal
dimers: (a) Interface region in approximately [110] view of the lower crystal part, (b) pair distribution of
five adjacent layers around the interface.

1.5 Conclusions

Molecular dynamics simulations (MD) based on empirical potentials are used to investigate the re-
laxation of nanostructures. It is demonstrated that different final structures for different potentials
occur in simulating, e.g., quantum dot relaxations or the bonding of two Si(001) wafers rotationally
misaligned. The angular and distance behavior near defects shows the better electronic potential
structure for the enhanced BOP4 potential. It clearly demonstrates the importance of enhanced
empirical potentials as it is given by the tight-binding based analytic bond-order potential BOP4+
up to 6th order momenta.
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\c@proposition=\count100

\c@question=\count101

\c@solution=\count102

\c@remark=\count103

\instindent=\dimen119

\figgap=\dimen120

\figcapgap=\dimen121

\tabcapgap=\dimen122

\c@merk=\count104

\c@@inst=\count105

\c@@auth=\count106

\c@auco=\count107

\instindent=\dimen123

\authrun=\box26

\authorrunning=\toks14

\tocauthor=\toks15

\titrun=\box27

\titlerunning=\toks16

\toctitle=\toks17

\c@contribution=\count108

) (c:/TeX/texmf/tex/latex/base/flafter.sty

Package: flafter 2000/07/23 v1.2i Standard LaTeX floats after reference (FMi)

) (c:/TeX/texmf/tex/latex/graphics/graphicx.sty

Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)

(c:/TeX/texmf/tex/latex/graphics/keyval.sty

Package: keyval 1999/03/16 v1.13 key=value parser (DPC)

\KV@toks@=\toks18

) (c:/TeX/texmf/tex/latex/graphics/graphics.sty

Package: graphics 2001/07/07 v1.0n Standard LaTeX Graphics (DPC,SPQR)

(c:/TeX/texmf/tex/latex/graphics/trig.sty

Package: trig 1999/03/16 v1.09 sin cos tan (DPC)

) (c:/TeX/texmf/tex/latex/texlive/graphics.cfg
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File: graphics.cfg 2001/08/31 v1.1 graphics configuration of teTeX/TeXLive

)

Package graphics Info: Driver file: dvips.def on input line 80.

(c:/TeX/texmf/tex/latex/graphics/dvips.def

File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR)

))

\Gin@req@height=\dimen124

\Gin@req@width=\dimen125

)

! LaTeX Error: File `subeqnar.sty' not found.

Type X to quit or <RETURN> to proceed,

or enter new name. (Default extension: sty)

Enter file name: 

! Emergency stop.

<read *> 

         

l.11 ...aphicx}  \usepackage{subeqnar}  \setlength

                                                  {\textwidth}{15.0 cm}^^M

*** (cannot \read from terminal in nonstop modes)

Here is how much of TeX's memory you used:

 994 strings out of 95104

 10681 string characters out of 1186615

 64838 words of memory out of 1517227

 4117 multiletter control sequences out of 10000+50000

 3640 words of font info for 14 fonts, out of 1000000 for 2000

 458 hyphenation exceptions out of 1000

 29i,0n,21p,603b,36s stack positions out of 5000i,500n,6000p,200000b,40000s

No pages of output.


