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Abstract
A new type of a structural unit (the 42m dreidl) is proposed on the basis of

molecular dynamics simulations for the core model of the (001), 90ë twist grain
boundary in silicon. The structural unit resembles a polyhedron in which some
edges, not corresponding to bonds between atoms, are absent. The dreidl has the
42m (D2d) point-group symmetry and consists of 14 atoms which form eight ® ve-
membered rings maintaining tetrahedral bonding in the boundary core.
Molecular dynamics simulations with the empirical Terso� potential were
performed to evaluate the energy of the (001), 90ë twist boundary at T = 0 K.
The e� ect of both rigid-body translations parallel to the grain boundary plane
and alternative reconstructions involving conventional structural units was
investigated. Despite the high degree of dimerization the twist boundary was
found to have a low energy compared with structural models of twist grain
boundaries in silicon previously studied.

§ 1. Introduction
In general, complex symmetry properties of a crystal structure provide a variety

of ways to disturb the crystalline order in the structure with a minimal change in its
energy by creating various lattice defects. The more elements the space symmetry
group contains, the more types of defects may be produced in the structure, with a
symmetry element lost generating a particular type of lattice defect. In particular, a
speci® c type of a planar defect can occur in non-symmorphic crystals of diamond
cubic lattice (space symmetry group, Fd3m) such as Si, Ge or C owing to the pre-
sence of a fourfold screw axis 41. Owing to this symmetry element, when a single-
atomic layer normal to the screw axis (i.e. a (004) plane) is removed in a diamond-
lattice crystal, the two half-crystals adjacent to the layer turn out to be rotated by 90ë

about it. The subsequent joining of the two half-crystals by a translation towards
each other results in the (001), 90ë twist grain boundary. It can arise from a 90ë

rotation of one part of a crystal or from the aggregation of point defects (vacancies
or interstitial atoms), that is without real rotation. Another important feature of this
twist boundary stems from the fact that the 90ë rotation changes the normal
sequence of (004) layers in the diamond lattice, thus creating a stacking fault in
the (001) plane. Indeed, the atomic arrangement in the diamond lattice can be
envisaged as a helix with the stacking sequence abcdabcd. . . of four basic layers a,
b, c and d along its axis which coincides with the fourfold screw. The basic layers
occupy in the cubic unit cell the positions z = 0, 1

4,
1
2 and 3

4 respectively, and each layer
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in the sequence abcd. . . can be obtained by 90ë counter-clockwise rotation of the
preceding layer about the helix axis and a subsequent translation along it by a
quarter of the lattice parameter. Therefore, the counter-clockwise rotation of the
upper half-crystal by 90ë about 41 changes the lettering of each layer above the
rotation plane according to the rule a ® b ® c ® d ® a. On the assumption that
the letters of the part below the rotation plane remain the same, this procedure can
be represented as follows:

a b c d a b c d
¯ ¯ ¯ ¯
b c d a

(1)

resulting in a stacking sequence

a b c d| |b c d a ´´´ (2)

with a removed a layer (unstable intrinsic stacking fault). In turn, 90ë clockwise
rotation of the upper half-crystal changes the lettering above the rotation plane as

a b c d a b c d
¯ ¯ ¯ ¯
d a b c

(3)

such that a stacking sequence

a b c d |d| a b c ´´´ (4)

with an inserted d layer (extrinsic stacking fault) occurs.
Here we report an atomic structure of the (001), 90ë twist boundary in Si pre-

dicted by classical molecular dynamics (MD) simulations with the empirical many-
body potential of Terso� (1989). The present study is motivated by a considerable
interest in the atomic and electronic structures of synthetically made (001) interfaces
in Si, since a Si(001) wafer is the most common material used in wafer-bonding
technology (GoÈ sele et al. 1995). As is known, a vicinal Si(001) surface consists of
terrace-like domains of dimer rows and atomic steps (along [110] or/and [110])
separating the domains and accommodating the miscut angle. According to Chadi
(1987), there are two types of stable step: single-layer steps SA and SB, which rotate
the dimerization direction in the neighbouring domains, and double-layer steps DA

and DB, which conserve it. The former are known to become energetically favour-
able at miscut angles smaller than 1ë . Thus, the (001), 90ë twist boundary may occur
if a ¯ at (001) surface adheres to a surface with a single-layer step SA to restore perfect
bonding across one terrace. According to ® gure 1, this procedure gives rise to a
stacking fault of either intrinsic (vacancy) or extrinsic (interstitial) type, depending
on the mutual orientation of dimer rows on the adjacent surfaces of upper and lower
crystals. The intrinsic stacking fault occurs if dimerization directions of the upper
crystal surface and the upper terrace of the lower crystal coincide (® gure 1 (a)).
Otherwise, the extrinsic stacking fault occurs, as shown in ® gure 1 (b).

Furthermore, the study of the {001} extrinsic stacking fault was encouraged by a
considerable interest in the atomic structure and energy of agglomerations of self-
interstitials in Si and Ge, which occur as planar and/or rod-like defects after light-ion
implantation or electron irradiation. Although interstitial atoms mostly aggregate on
the {113} habit plane (Burret 1987, Takeda 1991, Takeda et al. 1994, Aseev et al.
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1994), interstitial agglomerations with the {001} habit plane have been reported too
(Pasemann et al. 1983, Muto and Takeda 1995). Hence, although direct high-resolu-
tion electron microscopy (HREM) observations are very rare for twist grain bound-
aries in Si and Ge (Sutton 1991), there is some experimental information as to the
structure of interstitial planar defects. Recently energy minimization calculations for
the {113} interstitial defect in Si have been carried out using empirical potentials
(Kohyama and Takeda 1992, Parisini and Burret 1993) and the tight-binding method
(Kohyama and Takeda 1995). Therefore, from energy calculations of the {001}
extrinsic stacking fault and a respective comparison with the above results for the
{113} one could elucidate the observed hierarchy of the habit planes in the aggrega-
tion of self-interstitial atoms.

§ 2. Simulation procedures

The energy minimization simulation of the atomic structure in the (001), 90ë

twist boundary core at T = 0 K was performed using constant-energy-volume
MD, with the velocities being rescaled to remove the kinetic energy. The ® fth-
order predictor± corrector algorithm of Gear was employed in the integration scheme
with time step of 2.5 ´ 10- 16 or 1.0 ´ 10- 15 s. The empirical interatomic potential of
Terso� (1989) was chosen which was motivated by comparative studies of two
reconstructions of the 90ë partial dislocation core in Si. In agreement with ab-initio
pseudopotential calculations (Bigger et al. 1992), the potential of Terso� predicts the
asymmetric reconstruction with fourfold-coordinated atoms, whereas the Stillinger±
Weber (1985) potential, in contrast, supports the symmetric quasi® vefold-coordi-
nated reconstruction (Duesbery et al. 1991). However, the Stillinger± Weber potential
with the larger cut-o� radius than the Terso� potential was also employed in the
present study.

The computational cell L x ´ L y ´ L z contains a block of 69 single-atomic (004)
layers (4968 atoms) and has dimensions L x = 12a0 and L y = 6a0 (a0 = 3.84AÊ is the
shortest translation in Si) in the directions x = [110] and y = [110] respectively.
Periodic boundary conditions are imposed in the directions x and y, whereas the
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Fig. 1

A single-layer step SA adheres to a ¯ at (001) surface to form an intrinsic (a) or an extrinsic
(b) stacking fault.



dimension L z in the direction z = [001]was chosen so as to keep the upper and lower
surfaces of the block free. This kind of border condition allows for relaxation along z
and enables the free volume associated with the grain boundary to be evaluated. The
initial atomic con® guration (model A) was constructed as follows.

(1) An a layer at the centre of the 70-layer block is removed, which divides the
original block into two half-crystals.

(2) The adjacent surfaces of two half-crystals are reconstructed to form rows of
dimers, which corresponds to wafer-bonding modelling.

(3) The upper crystal is translated by a /2 = 2.715 AÊ along [100], where
a = 5.43 AÊ is the lattice parameter of Si, and by a /4 = 1.358 AÊ along [001]
(towards the lower half-crystal). Apart from the atomic displacements due to
formation of the dimer bonds, initial positions of atoms in model A are
given by eqn. (4), since the translation of the upper half-crystal by the vector
(a /2)[100] changes the stacking sequence (2) according to the rule

a b c d b c d a
¯ ¯ ¯ ¯
d a b c

(5)

and thereby transforms it into the extrinsic stacking fault (4).

The e� ect of rigid-body translations parallel to the boundary plane on the energy
of the twist boundary was investigated by a preliminary translation of the upper half-
crystal in model A by vector (a0 /2)[110]. This procedure changes the lettering order
as

a b c d d a b c
¯ ¯ ¯ ¯
c b a d

(6)

and gives rise to a twin abc|d|cbad. . . . The optimum translation is automatically
determined during relaxation. Since there is a symmetry axis 4 in model A, transla-
tion in the perpendicular direction does not result in a new atomic con® guration. The
con® guration obtained allows two types of reconstruction: with quasi® vefold-
coordinated atoms (model B) and with only fourfold-coordinated atoms (model
C). Structural model B, found in MD simulations with a modi® ed Stillinger±
Weber potential (Conrad et al. 1996), occurs if the dimer bonds on one of the
adjacent surfaces are broken, whereas structural model C results from the proce-
dure proposed by Tan (1981) for the intermediate defect con® gurations, resem-
bling his model of the {113} stacking fault. The initial positions of atoms in the
structural models B and C were prepared by MD simulations using the code
Cerius3.2, which employs the Keating valence force ® eld and enables the pre-
scribed topology of the bond network to be conserved in the course of MD run.
In simulations with the Terso� and Stillinger± Weber potentials, bonds are only
conceptual.

§ 3. Discussion of results

As previous simulations showed (Phillpot and Wolf 1989, Tarnow et al. 1990,
Cheikh et al. 1991, Ralantoson et al. 1993, Kohyama et al. 1993, Kohyama and
Yamamoto 1994, Kohyama 1996), in Si and Ge the twist boundaries generally
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exhibit a higher structural disorder (distorted bonds and coordination defects) than
tilt boundaries do. Thus stable structural units with only fourfold-coordinated
atoms, similar to those for tilt boundaries, are di� cult to construct. Even when
such structural units are possible, high bond distortions give rise to interfacial
energies large relatively to those typical of tilt boundaries. However, a low-energy
structural unit turns out to be possible for the (001), 90ë twist boundary. The
results of the energy minimization simulations for the structural models A, B, C
and D at T = 0K are summarized in table 1, where the energies and charac-
teristics of structural disorder for some other structural models of twist boundaries
(without coordination defects) are reproduced for comparison from the review by
Kohyama (1996). The energy minimum is achieved in model A (® g. 2 (a)) which
retains all dimer bonds between atoms in the same grain. Also, new bonds are
formed across the grain boundary to recover the fourfold coordination for all
atoms in the grain-boundary core. A similar tendency to lower the energy by forming
dimer bonds parallel to the boundary rather than bonds across the boundary has
been found in ab initio pseudopotential calculations by Tarnow et al. (1990) for
R = 5, (001) twist boundaries (36.9ë and 53.1ë ) in Ge. The grain-boundary region
in model A is (2 ´ 2) reconstructed and can be imagined as consisting of arrays of
structural units shown in ® g. 3. This structural unit is called dreidl, following the
paper by Mostoller et al. (1994), where a similar closed structure, the mm2 dreidl,
composed of ® ve- and seven-membered atomic rings (18 atoms) and having the point
symmetry group mm2 (C2v) was shown to occur at the intersection of two orthogonal
edge dislocations. The dreidl of ® g. 3 consists of 14 atoms, which form eight ® ve-
membered rings. It has the improper fourfold symmetry axis 4 and belongs to the
point group 42m (D2d). According to table 1, the dreidl ® ts two rotated half-crystals
with a minimal structural disorder, only dimer bonds of the length d = 2.44 AÊ are
moderately stretched. Therefore it is a suitable t̀wist unit’ for the 90ë rotation in the
diamond lattice.

Model B (® g. 2 (b)) was found to have an energy only about 19% higher energy
than that of model A despite the presence of coordination defects and larger bond
distortions. The grain-boundary region is (2 ´ 1) reconstructed, containing quasi-
® vefold-coordinated atoms with four neighbours at a distance of 2.50 AÊ , and one
neighbour (¯ oating bond) at a somewhat larger distance d = 2.55 AÊ , which is the
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Table 1. Energy and structural disorder for di� erent models of the (001), 90ë twist boundary
and coincident site lattice twist boundaries (Kohyama 1996) (tight-binding method).

Rotation angle Egb Bond stretching Bond bending
Boundary (degrees) (J m- 2) (%) (degrees)

k 001l , model A 90.0 0.85 - 1.4 to + 3.8 - 12.4 to +15.9
k 001l , model B 90.0 1.02 Coordination defects
k 001l , model C2 90.0 1.94 - 6.9 to + 10.1 - 59.0 to +35.1
k 001l , model C6 90.0 1.98 - 2.1 to + 6.0 - 33.2 to +19.1
k 001l , model D2 90.0 1.53 Coordination defects
k 001l , model D6 90.0 1.20 Coordination defects
k 111l , R = 7 38.2 1.28 - 1.4 to + 4.6 - 23.5 to +21.3
k 111l , R = 7 98.2 1.28 - 1.4 to + 4.9 - 25.0 to +22.1
k 011l , R = 3 109.5 1.02 - 2.4 to + 2.0 - 35.5 to +28.5
k 001l , R = 5 36.9 2.05 - 2.5 to + 16.0 - 24.4 to +37.3
k 001l , R = 5 53.1 2.34 - 1.5 to + 14.8 - 24.7 to +49.8
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Fig. 2

Structural models (a) A and (b) B of the (001), 90ë twist boundary. Layer group symbols and
planar black± white group symbols of the grain boundary core are given according to
Grell et al. (1988).

Fig. 3

Dreidl: closed structure with the point group 42m, black± white point group 4Â 2Â m (white and
black atoms belong to the upper and lower half-crystals respectively).



length of the unbroken dimer bond. The energy minimization for models A and B
was also performed using the potential of Stillinger and Weber, which is known
(Phillpot and Wolf 1989, Kohyama and Yamamoto 1994) to favour overcoordinated
structures, especially those containing ® vefold-coordinated defects typical of amor-
phous Si, since this potential is parametrized to reproduce the structure of liquid.
However, in the present calculations the Stillinger± Weber potential gives rise to
energies for model A (Egb = 0.806 J m- 2) and model B (Egb = 1.044 J m- 2) similar
to those obtained with the potential of Terso� . Hence the tendency for the Stillinger±
Weber potential to produce overcoordinated structures is not con® rmed in this
case.

Relaxation of model C created by using the Keating valence force ® eld reveals
complicated metastable con® gurations with large energies and bond distortions, but
without coordination defects. Two metastable con® gurations were obtained with the
Terso� potential: C2 with the reconstruction (2 ´ 1), and C6 with the reconstruction
(6 ´ 1). The two con® gurations (illustrated in ® gs. 4 (a) and (b) respectively) have
similar y projections but di� er in atomic displacements along the y axis. Models C2

and C6 contain the conventional structural units such as alternating pairs of ® ve- and
seven-membered rings separated by six-membered rings. Such a structure resembles
an array of parallel dipoles of edge dislocations. The energies of these two models
exceed the energy of model A more than twice, correlating with the value 1.83 J m- 2

obtained by Phillpot and Wolf (1989) with the Stillinger± Weber potential for an
unreconstructed (001), 90ë twist boundary. As follows from table 1, model C2 has
a somewhat lower energy than model C6 in spite of larger bond distortions. This
might be explained by the fact that some atoms in the boundary core of model C2

are actually ® vefold rather than fourfold coordinated, and in this case the Terso�
potential favours the overcoordinated structure. However, it is more important that
models C2 and C6 turn out to be unstable for the Stillinger± Weber potential. The
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Fig. 4

Structural models (a) C2, (b) C6, (c) D2 and (d) D6 of the (001), 90ë twist boundary.



corresponding energy minima, con® gurations D2 and D6, were achieved in the
course of two successive MD runs with the Stillinger± Weber and Terso� potentials.
According to table 1, these models have signi® cantly lower energies than C2 and C6,
although there are coordination defects in the grain-boundary core (® gs. 4 (c) and
(d)). One should also note that the reconstruction (6 ´ 1) correlates with size
L x = 12a0 of the computational cell, which is a multiple of six. This probably
means that the tendency to lower the grain-boundary energy by forming an aperiodic
structure is suppressed by the periodic boundary conditions.

§ 4. Concluding remarks

It is well recognized that in covalently bonded materials the atomic structures of
grain boundaries are related to their electronic structures and that the stability of
grain boundaries depends upon the formation of stable structural units (for example
Sutton and Ballu� (1995) and references therein) consisting of atomic rings without
dangling bonds, and with only small bond distortions. This idea, in its simplest form
of the s̀tick-and-ball’ model, was ® rst used by Hornstra (1959, 1960) to predict the
basic structural models of dislocations and tilt boundaries. The present study allows
some conclusions as to the stability of di� erent structural units to be drawn from the
properties of models A and C constructed according to this principle, and to eluci-
date the role of eight-membered rings in stabilizing the structures. Model A com-
posed of ® ve- and eight-membered rings in [110] projection is the most stable
con® guration, since the introduction of the eight-membered rings allows one to
optimize the angular bond distortions and thereby to reduce the grain-boundary
energy. Model C consisting of only ® ve-, six- and seven-membered rings is a high-
energy metastable state for the Terso� potential, and not at all stable for the
Stillinger± Weber potential. Similar trends have been pointed out (Kohyama and
Takeda 1992) for the {113} interstitial planar defect. The model of Tan (1981)
made up of ® ve- and seven-membered rings has a considerably higher energy
(Aseev et al. 1994) than that of Takeda (1991), who introduced eight-membered
rings to stabilize the structure.

The results of our simulations listed in table 2 allow one to elucidate the in¯ uence
of the grain-boundary reconstruction on the free volume, which is the volume dif-
ference of the crystal with the twist boundary, and the corresponding perfect crystal.
By now, many attempts have been made to relate the free volume to structural
features and the energy of twist boundaries. In particular, positive volume expan-
sions have been reported for di� erent models of (001) twist boundaries, both un-
reconstructed (Phillpot and Wolf 1989) and reconstructed (Kohyama and
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Table 2. Free volume for di� erent reconstructions of
the (001), 90ë twist boundary.

Volume expansion
Model Reconstruction (AÊ per unit area)
A (2 ´ 2) 0.64
B (2 ´ 1) 0.55
C2 (2 ´ 1) - 0.33
C6 (6 ´ 1) - 0.33
D2 (2 ´ 1) - 0.33
D6 (6 ´ 1) - 0.27



Yamamoto 1994), whereas some other twist boundaries, (111) and (511), were
shown to undergo a contraction (Phillpot and Wolf 1989, Cheikh et al. 1991,
Kohyama and Yamamoto 1994). According to table 2, the (001), 90ë twist boundary
can undergo both expansion and contraction depending on the type of reconstruc-
tion. The dominating factor is the directionality of bonds. The grain boundary tends
to optimize angular bond distortions close to the nearest energy minimum, which is
possible by either expansion or contraction.

Finally, we discuss the energetics of aggregation of self-interstitial atoms in Si.
The tight-binding calculations of Kohyama and Takeda (1995) for Si yield the value
Egb = 0.60 J m- 2 for two structural models of the {113} interstitial planar defect,
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Fig. 5

Simulated [110]HREM and ® ltered images of the (a) intrinsic and (b) extrinsic stacking faults.
Structural models (a) and (b) are relaxed using the Terso� potential. There are no
dangling bonds in cores of the partial dislocations situated at the edges of the stacking
faults. Imaging conditions are speci® ed by the electron beam energy E = 200 kV,
spherical aberration Cs = 1.2 mm, the defocus value ¢ (nm) and the specimen
thickness t (nm). (Continued overleaf )



namely |IO| and |IIO|, which involve eight-membered rings. Similar values
0.74 J m- 2 and 0.77 J m- 2 respectively, were obtained by these workers using the
Stillinger± Weber potential. The energy of the {001} interstitial planar defect
(model A) is somewhat higher, which makes the {113} habit plane rather than the
{001} plane energetically more favourable for the agglomeration of interstitials.
HREM images of the {001} extrinsic stacking faults, simulated for di� erent defocus
values, are illustrated in ® g. 5. These images demonstrate that the e� ect of the (2 ´ 2)
reconstruction on the image contrast (a double contrast periodicity with respect to
the perfect lattice contrast) can be enhanced or suppressed by choosing the appro-
priate defocus value. Probably, the {001} interstitial defect in Ge recently reported
by Muto and Takeda (1995), who independently revealed model A directly from the
analysis of the HREM image (although they reported a fourfold symmetry instead of
the correct 4-fold one), has the same structure as the central part of the defect
reported earlier by Pasemann et al. (1983), where traces of a similar reconstruction
are visible.
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