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The direct object retrieval via the linearized inversion of the dynamical scattering matrix is extended

using a second order perturbation theory and including mixed type potentials. The higher order

perturbation increases the confidence region extracting object thickness and bending directly out of

amplitude and phase of an electron wave without using trial-and-error iterative matching. Applying

parameterization of a mixed type total scattering potential as a priori information enables a simple

extension of the structure retrieval procedure to reconstruct local variations of the object potential, too.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The retrieval of the object structure in transmission electron
microscopy (TEM) is in mathematical sense an inverse problem,
as it is the case for the most mathematical problems in science,
technology and medicine [1,2]. One has to determine model
parameter or even a model itself out of experimental data where
the direct problem, e.g. the physical link between a model and
its parameter to the resulting data is known solely. Thus, all
difficulties arising for inverse problems, especially their ill-
posedness in mathematical sense, occur in TEM object retrieval,
too. The ill-posedness is the main difficulty irrespective which
way of solution is preferred: the direct solution of the inverse
problem, suitable restriction to isolated parameter reconstruction,
or trial-and-error solutions. The latter is up to now applied in
nearly all applications of TEM structure analysis and is called
image matching, if the intensity is fitted. A trial-and-error analysis
in TEM is simply the repeated solution of the direct problem by
varying all the modeling parameter up to correspondence
with the experiment. Structure retrieval in TEM needs at least a
solution of the phase problem, image matching based on the
dynamical theory, and as much as possible additional a priori

information. Then combining any inverse solution with tomo-
graphy methods a complete structural retrieval should be
possible.
ll rights reserved.
The phase problem in the imaging process alone may in
principle be solved using electron holography [3] or defocus wave
reconstruction techniques [4], and in the following is assumed,
that the exit wave of the object is already determined in
amplitude and phase. Then, for instance, as described earlier
in details [5–7], the retrieval of local object information can be
performed directly from the electron microscope exit wave
function without using trial-and-error iterative matching.
The algorithm allows the direct analysis of variations within the
lateral object extension of object thickness and beam orientation
or equivalently local bending of the object. In principle, exten-
sions are possible also to include changes of the scattering
potential, local structural variations and special lattice defects
into the reconstruction algorithm. Always the object retrieval
requires the solution of the inverse scattering problem, which can
be gained by linearizing the solution of the dynamical theory and
constructing regularized and generalized inverse matrices.

In general, inverse problems are difficult, always fascinating,
and in most cases ill- or improperly posed [1,2]. Ill- or improperly
posed means that one or all of the requirements are violated
usually characterizing physics, i.e. the existence, uniqueness and
stability of a solution. The reason is a mathematical one, and even
if this is not of general interest in physics, one can find in
mathematical textbooks (already from J. Hadamard around 1902),
that any operator equation of the first kind k� f=g with a linear
compact operator between Banach spaces cannot have a solution f

which continuously depends on the right hand side g. The non-
continuity makes the inverse instable. And much more difficult, a
lack of information cannot be remedied by any mathematical
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trickery, but all important decisions must be made on the basis
of insufficient information. Thus dealing with insufficient mea-
sured data requires always a priori physical related information.
Although inverse problems violate especially the existence of
unique and continuous solutions for arbitrary data, they are
of great practical importance if the trial-and-error solution
demands a large variety of possible solutions and models to be
tested, as they provide a better insight into the basic relations of
the physical phenomena.

The present paper is the first part of a reformulation of the
object retrieval using linearized direct inversion of the scattering
matrix; solely the theoretical background is given. A second part
will check the consequences of reformulation and present
applications. The paper is organized as follows: A short descrip-
tion of the problem in Chapter 2 and resuming some typical
inverse solutions given in the literature. Chapter 3 gives a short
repetition of the inverse solution by linearization and the
extension to a 3rd order perturbation theory as well as the new
model of mixed potentials allowing a much more simple set of
parameter retrieval for the potential reconstruction. Chapter 4
finally is describing the influence of the modified retrieval
procedure to the very important regularization problem, an ill-
posed problem which is made well-posed, loses stability and has
to be regularized to increase the confidence region of the solution.
2. Object retrieval

Different techniques, as mentioned in the introduction, are
used to retrieve object data out of the TEM exit wave function. The
basis for the analysis is the dynamical theory of electron
interferences. For the sake of simplicity only the Bloch wave
representation is given in short. The basic equations of the Bloch
wave formulation in forward scattering approximation is the
eigenvalue system:

SAghCh�gCg ¼ 0

with

2KzAgh ¼ ð2K:g�g2Þdgh�Vg�h ð1Þ

Here the eigenvectors C1
g are the amplitudes of the lth partial

wave and its eigenvalues g1 the ‘‘anpassung’’ to the dispersion of
the lattice, which have to be determined as a function of the
lattice potential (optical potential including absorption) given by
its Fourier coefficients Vg as well as of the relative orientation of
the object with respect to the electron beam incidence wave
vector K; the component Kz of K may be corrected with respect to
the deviations from surface normal and refraction. For a plane
parallel perfect crystal of thickness t the exit object wave u results

uðRÞ ¼Sgfge2piððKþgÞRþ sg tÞ ð2Þ

which is given in terms of the modified plane waves with complex
amplitudes fg:

fgðtÞ ¼SðC�1
Þ
1
0C1

g expð2pig1tÞ ð3Þ

and reflections g, excitations sg, thickness t of a parallel-sided
object, coordinates r=(R, z). The amplitudes fg are constant with
respect to z in the vacuum as the stationary solutions of the wave
equation there. Within the crystal, however, the amplitudes of the
modified plane waves fg are z-dependent according to the Ewald
pendulum solution as described by the Bloch waves, which are the
stationary solution within the periodic potential. The explicit term
sgt results from a simple transform of the basic equations and
enable a smoother presentation of the single reflex thickness
oscillations. For the sake of simplicity a defect free crystal is
assumed, therefore the excitations of the Bloch waves are
constant within the object, and thus from the very beginning in
Eq. (3) replaced by (C�1)0, which is the general solution of the
boundary problem in forward scattering.

A more compact matrix form of Eq. (3) is given with
X={exp(2piAt)}D as the diagonal scattering matrix yielding

F¼ CXC�1y ð30Þ

where here and in the following {}D denotes a diagonal matrix and
{}OD (cf. Eq. (5) below) an off-diagonal ones with cero trace.

The most important techniques to solve the direct scattering
problem Eqs. (1)–(30) are the diagonalization of the eigenvalue
problem (1) for the whole structure or the transformation of
Eq. (3) to the so-called multi-slice algorithm. The diagonalization
makes difficult to include crystal defects directly and yield to
additional differential equations to be solved for the varying
amplitudes or excitations, but yield to a better physical insight
and enables the linearization as discussed below.

The direct problem consists in assuming parameter sets P=(t,
K, Vg,y), which describe the scattering and structural data,
solving Eqs. (1)–(3) and comparing the image intensity I=9u92 or
the wave u with TEM or holographic experiments. The trial-and-
error solution varies the parameters P calculating repeatedly u
up to experimental image matching. Uniqueness and stability is
presumed, but only guaranteed, if the same analyses are done as
discussed below for the inverse solution.

Fig. 1 schematically shows all necessary steps of the object
analysis by TEM: anticlockwise the trial-and-error technique,
clockwise the direct solution of the inverse problem. It should be
mentioned only that some object information immediately can
be retrieved out of the images, if a suitable reduction of the data
under special imaging conditions is performed, e.g. strain and
composition analysis using special reflections, shift of contrast
features, Fourier filtering of the images or the geometrical phase
analysis, cf. e.g. [8]. Another possibility to extract direct
information out of images is the interpretation in terms of
special contrast features, as e.g. s-state model interpreting high
resolution TEMs in terms of column channeling of atomic row
projections (cf. [9] and the discussion of its limitations [10]). The
‘‘brute force’’ method [11], where for each reflection of
holographic reconstructed micro-diffractions amplitudes and
phases for a sufficient parameter space are simulated in
advance as basis to find the best fit to the experiment, is a
bridge between trial-and-error and inversion avoiding solely the
repeated calculation. The combination of trial-and-error
simulations with an electron based direct structure analysis
method [12] is a step towards inverse solution, too.

Whereas the first step of inversion is solved, replacing the
image by a hologram or a defocus series, which makes the problem
linear, and find the exit object wave by inverse Fourier transform,
the step from the exit wave to the object structure is the real
challenge of inversion.

Probably the first solution of an inverse TEM problem was
proposed by Head [13] using the cross section formulation of
diffraction contrast for lattice defects with plane strain or stress to
reconstruct the whole displacement field of the defect out of the
component registered within the image plane. It reflects the basic
idea: use as much as possible a priori information and restrict the
problem to find only the deviations in parameter space of
a known operator instead of an unknown operator itself. And it
is a direct inversion: the image contrast and the displacement
field gradient of lattice defects are related directly via a series
expansion using the a priori information of plane stresses which
couples depth oscillations and lateral contrast modulations.

The different inverse solutions may be characterized as
follows: solutions based on the inversion of the multi-slice
formulation [14–21]; inline holography to directly structure
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Fig. 1. At least four different steps have to be inverted to solve direct object retrieval in TEM.
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factor evaluation [22]; inverting the dynamical matrix by using
additional relations between its entries [23–26] or reducing the
unknowns by applying systematic row excitation [27] or series
expansion of the scattering matrix [28] to overcome the problem
that each 2-dimensional pattern fills only one column of the
scattering matrix; Pade approximation of the scattering matrix or
ptychography [29–31]; applying additional information by using
rocking beam in convergent diffraction [32], heavy atoms or two
different thicknesses [33,34] to overcome the scattering phase
problem; transform the inverse problem via an algebraic
discretization to include defect reconstruction [35,36]; and
perturbation approximation to get linearized inverse [5–7,37].
Some of the solutions, e.g. [23–26,28,35–37], use the a priori
information to reduce the number of unknowns or to increase the
number of equations so that the problem is well-posed for
the subspace of interest. In [17–19,32–34] gradient minimization
or related numerical techniques are applied to start from a guess
of the scattering potential and to enhance it recursively or
iteratively. Simulating the dynamical scattering by e.g. multi-slice
a least square or likelihood measure between simulated and
experimental exit waves is minimized numerically. The mini-
mization criterion is equivalent to that discussed in chapter 4
below, the important difference to the numerical iterations is
given here by the beforehand analytical approximation (6) of the
dynamical scattering which enables the linearization (7) and thus
the analytical and pixel wise inversion in Eq. (8) as well as the
enhancements discussed in Chapter 3.

The linearized inverse solution as mentioned in Chapter 1 and
described in [5–7] starts with the perturbation approximation of
Eqs. (1)–(3). Assuming non-degenerated eigenvalues g, and by
analogy with Eq. (30), the perturbation solution reads

U¼C N C�1h ð4Þ

where the eigenvector C and scattering N matrices as well as the
eigenvalues l corrected by the perturbation are given by

C¼ Cð1þDf1=ðgi�gjÞgOD
Þ; N¼ fexpð2piltÞgD

and

l¼ gþDfdijgDþD�1
f1=ðgi�gjÞgOD

D ð5Þ
The perturbation matrix D reads explicitly Dgh=
C�1((DK.g){dgh}D+ iDVgh)C and contains as diagonal elements the
deviation of the orientation DK from that of the original non-
perturbed eigenvalue system K. The non-diagonal elements
describe a perturbation of the potential as, e.g. according to
optical absorption or varying structures.

Still Eq. (4) is a highly nonlinear relation between the
parameters P and the waves U; however, it can be expanded in
a Taylor series in 1st order yielding

UðPÞ ¼UðP0ÞþðP�P0ÞgradPU or more explicit ð6Þ

UðPÞ ¼UðP0Þþðt�t0Þd U=dtþðkx�kx0; ky�ky0ÞgradkUþ � � � ð60Þ

The perturbation solution and the Taylor linearization are valid
within certain intervals around t0 and K0=(kx0,ky0) and the further
parameter of the set P; the derivations of the latter are denoted
by ‘‘y’’ in (100). The derivatives can be gained from Eqs. (4) and
(5) straightforward using equivalent abbreviations:

dU=dt¼CdN=dtC�1y

and

gradkU¼ gradkCN�C�1gradkCNþCgradkN
� �

C�1y; etc: ð7Þ

Thus, the linearized Eq. (6) has the form
U(P)=U(P0)+(P�P0) M with analytically known theoretical
wave function U(P0) and matrix of derivatives M. Substituting
U(P0) by the experimentally measured wave the inversion is
straight forward for the unknown parameter P as discussed in the
following Chapter 3.
3. Higher order perturbation and mixed type potential

Based on the perturbation and the linearization the retrieval
procedure may now be summarized as follows. Starting e.g. from
an electron hologram, where all reflections g are separately
reconstructed, the moduli and phases for each partial wave of
reflex g of the experimental exit plane wave Fexp are determined
as function of the lateral pixel position (i,j). Moduli and phases up
to the maximum resolution are necessary to get sufficient a priori
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data. Theoretical waves Fth are then calculated using the
dynamical scattering matrix M for an a priori model characterized
by the number of beams and the scattering potential represented
by the potential coefficients Vo

g . With a suitable experimentally
predetermined trial average beam orientation K0 and a sample
thickness t0 as a free parameter, a perturbation approximation
yields both Fth and M as linear functions of parameters to be
retrieved.

The analytic form of the equations enables the inverse solution

P¼ ½t;K;Vg ; . . .� ¼ ½t0;K0;V
o
g ; . . .�þMinvðF

exp
�Fth

Þ ð8Þ

thus yielding directly for each image pixel (i,j) the local thickness
t(i,j), the local beam orientation K(i,j), and the variation of the
potential V as well as further data included into the parameter
space P.

An enhancement of the reconstruction algorithm is possible:
The application of mixed type potentials simplifies the recon-
struction algorithm and allows overcoming some limitations
using a local variable V. The optical potential matrix V is replaced
by a mixture of different but constant matrices Vk representing
different structures or composites or defect regions, etc., irre-
spective whether the absorption is included as additional
imaginary part or more complex. Important is, that additional
parameter qk are introduced to describe the local variation. With
the parameterized mixed type potential

Vði; jÞ ¼Skqkði; jÞV
k

ð9Þ

the inverse solution is then replaced by

½t;K; q1; q2; . . .� ¼ ½t0;K0; q01; q02; . . .�þMinvðF
exp
�Fth

Þ ð10Þ

or equivalently in short

P¼P0þMinvðF
exp
�Fth

Þ ð100Þ

where the new Vk
g as coefficients of Vk describe only additional a

priori information, but the qk increase the space of the unknown
parameter P=[t, K, qk, y] to be reconstructed for each pixel (i,j).
The qk(i,j) should thus be able to retrieve a locally variable
potential by weighting V via Eq. (9). The mixed type potential
replaces the deviation matrix as given above by the new one
Dgh ¼ C�1ððDK:gÞfdghgþSqkVk

ghÞC and thus all the derivatives via
Eq. (5). The remaining equations of the reconstruction formalism
keep the same form.

As a second enhancement the perturbation may be extended
to higher order which increases the confidence region of the
approximation by linearization. The perturbed eigenvalues up to
3rd order reads

l¼ gþDfdijgDþD
�1
f1=ðgi�gjÞgOD

D�D�1
fDii=ðgi�gjÞ

2
g

OD
D

þD�1
f1=ðgi�gjÞgOD

Df1=ðgi�gkÞgODD ð11Þ

and similar terms for the eigenvectors C which is straight forward
and thus not written here explicitly.
4. Stability and confidence of the direct inverse

In mathematical sense the inverse problem is ill-posed and
needs special techniques to get well-posed. A generalized
and regularized inverse matrix, as e.g. the extended Moore–
Penrose Minv=(MTC1M+gC2)�1MT, provides the least square or
the likelihood solution of the direct problem extended by the
constraint g99P�P099 of the unknowns, i.e. for instance
99Fexp

�Fth99+g99P�P099=Min with a suitable matrix norm.
The generalization of the inverse matrix avoids the ill-posedness
of the mathematical problem, but the generalized solution is now
ill-conditioned and thus instable. As pointed out in different
previous analyses (cf. [38–40] and references therein), a suitable
regularization of the retrieval procedure via the regularization
parameter g and the smoothing matrices C1, C2 requires the
control of the confidence and stability region, as well as
the avoiding of modeling errors. The confidence region may be
discussed considering the error of the fit for synthetic models
using a likelihood measure, showing that the thickness is an
uncritical parameter. The linearization smoothes the solution,
which is of advantage for increasing the stability of the algorithm,
however, it increases the fit error, which reduces drastically the
confidence region. The problem may be solved by an additional
iteration process varying the a priori start configuration whenever
the retrieved data go beyond the limits of the confidence region.
This holds true also for the new parameter space including the qk

of the mixed type potential. In addition, the difficulty in
the retrieval of the potential is avoided which arise because the
thickness is coupled with the mean absorption potential and a tilt
offset couples with the mean scattering potential. Due to these
couplings an artificial degeneracy of the solution occurred, the
mixed type potential, however, removes this coupling degeneracy
via the restricted freedom in applying the a priori information.
5. Conclusions

Structure retrieval at an atomic level directly from a recon-
structed electron wave at the exit surface of an object, results in
particular inverse problems of the first kind, viz. the analysis of
object parameters from measured data. Different possible solu-
tions are discussed; no one is sufficient stable up to now. The
direct solution of the inverse problem by linearization using
perturbation theory techniques is described in detail. To reduce
the difficulties, especially the instabilities of the inverse solution
due to the restricted confidence of the linearization, the
perturbation is extended to 3rd order and a simplified model of
the object structure is applied via a mixed type of potential.

The difficulties result from the mathematical point of view that
the retrieval procedure is an ill-posed inverse problem requiring
additional information, e.g. the periodicity of the object, the mean
thickness, the global orientation, the average potential or the
unperturbed atomic positions in order to make the process stable
and continuous, i.e. to avoid singularities, and to restrict the
manifold set of solutions. The procedure described has trans-
formed the ill-posed problem to a well-posed but instable one.
Whether uniqueness and stability of the extended solutions are
enhanced and can now handled by the regularization methods
applied, should be discussed in more detail in a forthcoming
paper.
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