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The system, however, is under-determined, resulting in free parameters as, e.g. for
arccos{llQ(mI2+EQMX}IZ—(IQOWI-|Q(th)3]/2IQ(meml} < arg{Qn00) =
arccos{ [1Qooo+HQo0i-(1Quuoi+ Qoo F21Quo0Qaoo - _

Using additional terms of (7) restricts the free parameters as to provide solutions probably

unique as they have components that depend on the linearly independent terms v, vy and vy,

4. Conclusions |

The retrieval of the atomic displacements {rom a reconstructed electron wave function at
the exit surface of an object results in the algebraic equation system (5) and the particular
inverse problem (7) with the difficulties of finding the roots as discussed. The procedure
described has thus transformed the difficulties of solving the direct scattering problem to the
mathematical problem of determining the roots of a function with an incomplete Fourer
transform. Furthermore, there are certain restriclions on the existence of solutions that would
enable the construction of numerical algorithms as, e.g., generic ones. From the mathematical
point of view the retrieval procedure is an ill-posed inverse problem requiring additional infor
mation about the unknown reconstructed displacements in order to make the process stable
and continuous. to avoid singularities, and to restrict the manifold set of solutions possible.
Open questions arise, e.g., with respect to the assumptions of cyelic boundary conditions, the
applicability of the completeness relation to the backward iteration and to depihs, where the

equations for the displacement retrieval cannot be inverted beeause of singulur coeflicients.
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RETRIEVAL OF ATOMIC DISPLACEMENTS FROM RECONSTRUCTED
ELECTRON WAVES AS AN ILL-POSED INVERSE PROBLEM

Kurt Scheerschmidt and Frank Knoll
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany

The imaging of crystal defects by using high-resolution transmission electron microscopy
or the electron diffraction contrast technique is well known and routinely applied. A direct and
phenomenological anaiysis of electron micrographs, however, 1s mostly not possible, thus
requiring the application of image simulation and matching techniques (see, e.g. [1]). On the
other hand, electron holography and other wave reconstruction techniques aliow one to
directly determine the scattered wave function at the exit surface of an object up to the infor-
mation limit of the electron microscope (see, e.g. [2,3]). Applying such a wave reconstruction
should enable an object retrieval, i.e. the determination of the object potential or the positions
of the atomic scattering centres directly from the wave function reconstructed instead of using
trial-and-error simulation techniques. Up to now, direct solutions have been given for very
thin objects (phase grating approximation, [4]) or for the assumption that the crystal potential
of the perfect structure is known and solely the atomic displacements owing to a crystal lattice
defect should be determined using the dependence of the three components in the case of
plane strains or stresses |5]. Based on the knowledge of the reconstructed complex electron
wave and using a discretized form of the diffraction equations, an alternative method is deve-
loped |6], which, in principle, enables the direct retrieval of the atomic displacements, caused
by a crystal lattice defect, relative to the atomn positions of the perfect lattice. A special inverse
problem of electron scattering can be deduced considering solely those atomic displacements,
which are given by the zeros of a function with an incompletely known Fourier spectrum. The

fundamental relations are described, with the problems of solving the ill-posed Fourier trans-
form being discussed.

1. Wave Reconstruction and Electron Diffraction

The electron microscope imaging is mainly determined by two processes: First, by the

electron diffraction owing to the interaction process of the electron beam with the almost
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periodic potential of the matter and, second, by the interference of the plane waves leaving the
specimen and being transferred by the microscope. Images are modelled by calculating both
processes, they are fitted to the experiment by varying the defect model and the free para-
meters. This trial-and-error image matching technigue is the indirect solution to the scattering
problem applied to analyse the defect nature under investigation.

The principles of image formation in the electron microscope have been well established:
According to the lens aberrations and the microscope instabilities the higher spatial frequen-
cies are transferred by alternating phase shifts and increased damping, respectively. In addi-
tion, owing to the recording of solely the image intensity modulus and phase of the electron
wave are always mixed, Holography with electrons offers one of the possibilities of
increasing the resolution by avoiding the microscope aberrations. 1t also enables the complete
complex object wave to be restored. Image plane off-axis holograms are recorded in a micro-
scope which is equipped with a Méllenstedt-type electron biprism inserted between the back
focal plane and the intermediate image plane of Lhe objective tens [2,7.8]. The object is arran-
ged so that both the reference wave and the object wave are transferred through the micro-
scope, and owing to a positive voltage of the biprism both waves mutually ovetrlap in the
image plane creating additional interference fringes. The intensity of the latter is modulated
by the modulus of the object wave, whereas their position is varied by the phase of the object
wave. Thus the recorded interference pattern is an clectron hologram from which both
modulus and phase of the object wave can be reconstructed by optical diffraction or numerical
reconstruction. A Fourier transform of the intensity distribution of the hologram generates
three distinct spectral patterns if the carrier frequency is sulficiently high, 1n the central region
of the spectrum zero peak and autocorrelation occur, representing  the conventional
diffractogram of the object intensity. completely identical with that obtained from a cor-
responding HREM micrograph. The sidebands represent the Fourier spectrum of the complete
complex image wave and ifs conjugate, respectively, from which the object wave o(x,y} can
thus be reconstructed by separating, centring, and applying the inverse Fourier transform with

the complex conjugate phase filter because of the always linear transfer to the sideband.

The interaction of electrons with a crystalline object is described assuming a periodic
potential with the electron structure factors as the expansion coefficients and the Bloch-wave
method of solving the high-energy transmision electron diffraction. Different formulations
cun be given, using Bloch wave or plane wave representations of the scattered waves,
applying direct or reciprocal space expansion and using direct integration or slice techniques,
which, in principle, are equivalent descriptions [9]. The object wave in terms of modified

planc waves with complex amplitudes ¢ g yields

ol R)=Eg¢gezﬂi((k+g)R+s gt) )

~
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N

Alllpllludcq ¢g are constant Wlth respcct 1o Z in the vacuum OUlSlde the Object Whlch means

::::I‘L‘:::Z pllztl'n‘c wav.es are the station:-iry solutions to the wave equation. Within the crystal
. r. the amplitudes of the modified plane waves 9g are z-dependent according to t]’lt;
Ewald pendel solution as described by the Bloch waves, which are the stationary soluti

the periodic potential. Using furthermore the deformable ion approximation a Zy sta‘l]tllon' .
defect can be included by its elastic displacement field as a phase shift of l-zlhe Fam'ce
spectrum of the crystal potential. The evaluation of the quantum-theoretical scatteri o,
blem by the high-energy forward scattering approximation (see, e.g. [10,11]) yields l;gp:‘z:

b()hl dlffere“tlal [+ y p ’
quatl()n system fOl‘ h X am 1
the com 1e a p ltudes Oi the elas[lca” SCattEICd

pgldz = {iszZ-Z(k+g)V}¢g/2k‘z+i02hvg_h¢hei‘-’~gh (2)

w.hcrc o=2nmelh2kk'z, V=(3/3x,3/0y.0), k'z=kz+gz+sg and cgh=27(sh-5 o)z+(g-h)v(x,y.2}]
w:lh the elastic displacement field v and the potential V=VY+iV" including tie lattice ot;:t'al
V" and the absorption V* (one electron-optical potential approximation of inelastic Sczl;tlerinl )
. H:)Iundarj.; and initial conditions have to be applied. too: The linearized high-energy a rf:,)'
lxlmauon directly fits ¢ g(R,t) at the crystal exit face to ¢ g(R) outside, demarI:cllJin
,¢“( R.(‘J)I--bgo at the entrance face, whereas the continuity of the derivatives has to be omittej
:;:):Ihttz.(:mlcnnzed case. Instead of the b(.)undary conditions one can assume a periodic continna-
r large extended crystal slabs, i.e, Pp(X.y,2)=0g(x+X.y.z) and Pg(X,y.Z)=Pg(x.y+Y
with slab extensions X,Y tending to infinity. s
“hg. I shows the modulus (left) and phases (right) of the exit wave function in reciprocal
(Fig. 1a) and real- (Fig.1b) space representation, simulated for a spherical inclusion F')thcellx-
!}Nht.)y—Brown displacement ficld and linear displacements within the defect. The wa:w fi o
tion is calculal.cd using the EMS package for multi-slice simulations [12]; th(; data corr:s u;:(;
loa 40‘0 kV microscope and |011]-silicon of high symmetric incidence having a sampl ll: -
ness of t=8.4nm. ple ek
| tig. 2 shows a calculated hologram (hol) assuming a perfect microscope without ab
Imllm (n) and its Fourier transform to demonstrate the reconstruction of the wave fu a' en'ai
rf'clprm'nl space. Fig 2. (b) demonstrates the intensity (diffraction pattern) and ph ncmt)"n .
sideband welected. Furthermore. the corresponding modulus (mod) and phasc } zse -
complete reconstructed sideband are shown in (¢), which should be e Eivalcsnt(pt a)hOf th'c
wive function. The holograms are gencrated assuming a reference bear: with a d:;)mtpierrlgexc:tE

il i i | | o y pL=N Y - Fan i K O
I nc f l. .2 nm ( l cat 44 43 4 3
Q0 ind noenrncer lregue [8) } r ] 1.e. 1O Cd appl()leatd at ll’ ]O( [} ) n
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Fig. 3 shows the modulus (mod) and phases (pha) of the particular reflections selected of
type 000, {200}, {022} and {111}, thus demonstrating the reconstruction of the
corresponding amplitudes ¢g from the holograms. The reconstruction of the {400} reflections
is impossible here because of the overlap of the autocorrelation and the sideband. Thus,
aperture and damping are chosen to exclude the {113} reflections, which also omits the
dumbbells in the HREM reconstruction resulting in differences between the original HREM

images and the corresponding reconstructions.

Fig. I: Modulus (left)
and phases (right) of
the exit wave function
simulated for a sphe-
rical inclusion:

) reciprocal-space
(diffraction), b) real-
space  representation
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2. Forward-Backward Iteration
The differential equations (2) allow the diffusion-like interpretation and can be discretized

using standard difference algorithms | 14}. With the help of

V29={0(x+ Aky 2)-20(x.y 2+ x-Ax.y 2)YAX2H[0(x.y+ Ay.2)- 20(x.y 2 )+9(x.y-AY.2) /Ay
o0/ar = [e(p(x.y.z+Az)-9(x.y.2))+(1-e)(x,y,2)-¢(x,y,z-Az)} ]/ Az 3)

an algebraic equation system results for the complex amplitudes and the elastic displace ments

al the (xy2) grid points (i j.k), Gi+1j.k), (i,j+1.k), and (ij.k+ ). Using the abbreviations
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Ar=20kzz01 2(x02K 2k x+ g N ex-1/2), (4)
B =10ka200 2(yo?K)+ 2k y+gy N +ey-1/2),
C=A~AT4B-B*+1/2-¢;, afijk)=2af(sh-s g)kzy/K+(g-h)v(i,j k)]

and denoting the maximum number of grid nodes in x.y, and z-direction by 1K vields

(112-220(ij k- (11248 )0g(i .k + 1 )=A*+hg(i+ 1§ K)-A"pgli-1j k)
+B Y og(ij+1.k)-B pglij- 1k HCopfij k)i o(zo/K)ZpV o hdhli gk Yelct(iy k) (5)

which is equivalent to forward (k+1) and backward (k-1) integration with respect to the beam
propagation, i.e. to £7= 1/2 or -1/2, respectively.
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)Fig.Z: Caiculated hologram (hol) and its Fourier transform (a; diffraction pattern with

auiocorrelation and sidebands) assuming a perfect microscope without aberrations for a
spherical inclusion (U=400kV, a=20nm-1, (12,8\/2,\/2/2)-[0]l]-Si-supercell, t=8.4nm, Rg=
1.6nm), the selected sideband with intensity and phase (b), and its complete reconstruction (c)
with modulus (mod) and phases {pha} representing the perfect exit wave function
(reconstructed HREM-image). The hologram is generated assuming a reference beam with a

damping of 0.2 and a carrier frequency of 13.2 nm-|.

The periodic boundary conditions and the initial conditions may simply be written
Oglij-k)=tgli+lj k), ¢glij.k)=pg(ij+) k), and I¢g(ij,0)|=60p (i j)=Fg(ij), respectively,
with Fg being known from the wave reconstruction for a certain number of reflections.
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The difference equations (5) are equivalent for backward (k-1) and forward (k+1) integrzfl-
tion, thus being insufficient for determining both the wave amplitudes ¢(i,j,k} and the elastic
displacement field ¥(i,j.k) at the grid points (i,j,k) considered. One of the differer'lce equations,
however, can be replaced as follows: While the optical potential in reciprocal sl.:)ace:
representation is generally non-Hermitian, the hermiticity of potential V' and of ,.absorption

V" yields the equation of continuity for the whole current I:¢g¢*g. The continuity equation

can be written as
. 6)
81/3z =25 gV " ghdgd el gh (

yielding the abbreviation ﬁl:Zg[kZ(¢gV2¢*g—q>*gV2¢g)+2(k+g)V(¢g¢>*g) I'K'z. |
The equation of continuity can be discretized by analogy with the discretizlation of the d-lf -
ferential equations above. The differential operator O, however, yields mixed terms rmth
respect to different nodes (i,j,k) and (ixl,j+1,k). By analogy with tt.le Gelfand-Levitan-
Algorithm (see, e.g., [13]) an additicnal equation results, which is a kind of completeness

relation, yielding

3 gQge2™gv=0. @)

Fig. 3 Modulus (mod) and phases (pha) of the single reflections 000. {200}, {220}, and {111},
i.¢. the corresponding plane wave amplitudes, reconstructed from sideband (b) of the hologram

(a) of Fig. 2 by filtering and centring of the corresponding reflections.

1 " - d
The cocefficients Qg=2hkz/sz g,g_hqagq)*g_h eprZrcl(Sg-Sg-h)zl for g=(000), -an
correspondingly Qpoo=-™1 are given for the nodes (ij.k) from eqgs. (6) in forward scattering.
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Eq.(7) can replace one of eqs.(3) in backward integration enabling the determination of
displacements v at (i,j,k) by inverting the equation of continuity as an independent additional
equation. Thus, in principle, the retdeval of the displacement is given by the remaining
inverse problem (7), which is the same as to find the root of a function given by an
incomplete Fourier transform.

At the exit surface a further equation is given applying the forward integration outside the
crystal to determine ¢(i,j,K+1) from ¢(i j.K) where the potential is assumed to be vanishing
because of the vacuum propagation. The backward integration, however, using eq. (6) then
enables the determination of v(i j,K) at the exijt surface.

3. The Remaining Inverse Problem

The inverse problem (7) is ili-posed for two reasons: Only one equation has to be solved
for the vectorial root ¥(i,jk} at node (ij.k), which describes three unknown quantities by two
conditions, and spectrum Qg(ij .k} is incomplete and noisy. This results in unstable numerical
solutions using standard algorithms to find the roots, owing to the existence of a large number
of subsidiary roots. Different algorithms are tested, viz. the Newton-Raphson algorithm itself
to solve eq. (7), and of transform eq.(7) in an iterative form as a kind of quasi-regularization,
e.g. using refations for the arguments yielding

vt = 1/2m{argl Qexp(27iv x")+ ZgQgexp(2rigy™-arg[Q]} ®)

and similarly for vy uz. Both algorithms demand the iteration for lnear independent coef-
ficients g, thus coplanar vectors g leave one component unconsidered.
Analytical solutions of eq.(7) can be performed if four terms at a maximum are considered,

which are revealed most easily by interpreting equation (7) in the complex plane as the
summation of rotating vectors Qg as a function of root v(i.j,k) at node (i,).k).

For non-vanishing Q000, Q3.00, for instance, the system is over-determined demanding
1Q0o00!=IQ).00! and resuiting in vx:1/%l{arg(Qom)—mg(ono)+(2k+I)n:}.

Otherwise, for non-vanishing Qooo, Qx00, Qouo, and with the other coefficients being
neglected, one yields

vx= 1/2mh {al'g(Qooo)-arg(ono)+arccos[(!Qmoil|Q0u0|2_|Q0m|2),r2;Q(meO| I} 9)

stmiiarly also for u y. with u; being arbitrary, however. Thus, considering solely three terms
provides an exact solution to the problem if IIQOHOI-IQM)IIsIQOOOIinQOMOIHQmII.

The solution based on four non-vanishing terms, in principle has the same structure,
enabling the determination of the component ¥,. 100, but having to fulfii further restrictions.



