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Summary

The imaging of crystal defects by high-resolution transmis-
sion electron microscopy or with the help of the electron
diffraction contrast technique is well known and routinely
used. However, a direct and phenomenological analysis of
electron micrographs is mostly not possible, but requires the
application of image simulation and matching techniques.
The trial-and-error matching technique is the indirect
solution to the direct scattering problem applied to analyse
the nature of the object under investigation. Alternatively,
inverse problems as direct solutions of electron scattering
equations can be deduced using either an invertible
linearized eigenvalue system or a discretized form of the
diffraction equations. This analysis is based on the know-
ledge of the complex electron wave at the exit plane of an
object reconstructed for the surrounding of single reflec-
tions by electron holography or other wave reconstruction
techniques. In principle, it enables directly the retrieval of
the local thickness and orientation of a sample as well as
the refinement of potential coefficients or the determination
of the atomic displacements, caused by a crystal lattice
defect, relative to the atom positions of the perfect lattice.
Considering especially the sample orientation as perturba-
tion the solution is given by a generalized and regularized
Moore-Penrose inverse, where the resulting numerical
algorithms imply ill-posed inverse problems.

1. Introduction

Electron holography or other reconstruction techniques
(Lichte, 1986, 1992; Coene et al, 1992; Van Dyck et al.,
1993) permit the determination of the scattered wavefunc-
tion at the exit surface of a crystal directly from the
hologram or from defocus series up to the microscope
information limit owing to the decreasing signal to noise
with spatial frequencies in the phases. In particular, the
sidebands of a Fourier-transformed hologram represent the
Fourier spectrum of the complete complex image wave and
its conjugate, respectively, from which the object wave can
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be reconstructed by separating, centring and applying the
inverse Fourier transform including the conjugate complex
phase contrast transfer to correct the aberrations. Thus,
both the reconstructed amplitudes and phases can be
compared to trial-and-error calculations (Lichte, 1991;
Lichte et al, 1992), where the wavefunctions are modelled
by calculating the interaction process of the electron beam
with the almost periodic potential of the matter and fitted to
the experiment by varying the object model and the free
parameters.

As often occurs in many physical investigations, in the
mathematical sense, the direct solution of the diffraction
equations implies an inverse problem. Inverse problems are
difficult, always fascinating and in most of the cases ill or
improperly posed (Tichonov & Arsenin, 1977; Lavrentiev,
1967). 1ll ‘or improperly posed means that one or all
requirements that usually characterize physics, i.e. exis-
tence, uniqueness and stability of a solution, are violated.
Although the inverse problems violate especially the
existence of unique and continuous solutions to arbitrary
data they are of great practical importance, if the trial-and-
error solution demands a large variety of possible solutions
and models to be tested, mostly providing a better insight
into the basic relations of the physical phenomena.

In previous papers (Scheerschmidt & Hillebrand, 1991;
Scheerschmidt & Knoll, 1994, 1995; Scheerschmidt,
1997ab), it was demonstrated that the local thickness
and orientation can be calculated directly from the
wavefunction reconstructed at the exit surface of the object
instead of using trial-and-error simulation techniques. In
principle, the analysis also holds good for the retrieval of the
object potential (alternatively to Van Dyck, 1989; Van Dyck
& Coene, 1988; Van Dyck & Op de Beeck, 1992; Gribelyuk,
1991), or if only the positions of the atomic scattering
centres are evaluated (similar to Head, 1969). The inverse
problems, however, generally dealing with insufficiently
measured data, always require physically related informa-
tion a priori. It was shown that the knowledge of both the
amplitudes and the phases of a sufficiently large number of
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plane waves scattered by the object as well as the partial
knowledge of the potential of the perfect crystal structure
imply the possibility of directly retrieving object information,
instead of using trial-and-error simulation techniques. Two
approximations are discussed to solve the resulting inverse
scattering problem without reconstructing the whole
crystal potential.

First, the special problem of retrieving the local sample
orientation is solved on the basis of the perturbation
approximation for perfect crystals, and by applying regular-
ized and generalized matrices to invert the resulting linearized
problem. The corresponding iteration procedure enables the
direct analysis of the moduli and phases if a sufficient number
of plane wave amplitudes can be separated, yielding local
thickness and bending of the object for each image pixel
(Scheerschmidt & Knoll, 1995; Scheerschmidt 1997a,b). This
approximation is valid solely for sufficiently perfect crystals,
otherwise a so-called modelling error occurs and the
corresponding atomic displacements due to defects have to
be retrieved by the following method.

Second, based on the knowledge of the reconstructed
complex electron wave and using a discretized form of the
diffraction equations, an alternative method is developed
(Scheerschmidt & Knoll, 1994, 1995), yielding an algebraic
equation system for the complex amplitudes and the elastic
displacements. In principle, this system enables the direct
retrieval of the atomic displacements, caused by a crystal
lattice defect, relative to the atom positions of the perfect
lattice. Here it is assumed that the deformable ion
approximation can be applied (see Section 3), which
sufficiently locates the defect information in the neighbour-
hood of the crystal lattice reflections. The equations are
invertible provided the completeness relation of the plane
waves is valid; this is described by the continuity of the
electron current. A special inverse problem of electron
scattering is deduced considering only the atomic displace-
ments given by the zeros of a function with an incompletely
known Fourier spectrum from the scattered electron wave of
which the displacement field of a crystal lattice defect can,
in principle, be retrieved.

The present paper outlines the fundamental relations
mainly for the first of the two special inverse problems
describing some first numerical experiences related to the
solution of the direct retrieval of local thickness and
orientation. Numerical aspects considered are e.g. the
stability of unique inverse solutions in terms of noise, and
the regularization of the problem. In addition, the physical
reasons for ambiguities in the inverse solutions are discussed.

2. Wave reconstruction by electron holography

Holography with electrons offers one of the possibilities
of increasing the resolution by correcting microscope
aberrations, It also enables the complete complex object
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wave to be restored. Image plane off-axis holograms are
recorded in a microscope which is equipped with a
Méllenstedt-type electron biprism inserted between the
back focal plane and the intermediate image plane of the
objective lens (Lichte, 1986, 1991, 1992; Lichte et al,
1992). The object is arranged so that a reference wave
outside it is transferred through the microscope, and due to
a positive voltage of the biprism both waves mutually
overlap in the image plane, creating additional interference
fringes. The intensity of the latter is modulated by the
modulus of the object wave, whereas the fringe position is
varied by the phase of the object wave, Thus the recorded
interference pattern is an electron hologram from which
both the modulus and the phase of the object wave can be
reconstructed by optical diffraction or numerical recon-
struction. The reconstruction starts with a Fourier trans-
form of the hologram. In addition to two sidebands in the
central region of the Fourier spectrum, the zero peak and
autocorrelation occur; this is equivalent to a conventional
diffractogram. The sidebands represent the Fourier spec-
trum of the complete complex image wave and its
conjugate, respectively, from which the object wave o(x.y)
can thus be reconstructed by separating, centring and
applying the inverse Fourier transform including a recipro-
cal Scherzer filter with damping and microscope aberrations
(Lichte, 1991; Orchowski et al., 1995).

In the following it is important that, besides the whole
sideband, each single reflection of sufficient intensity can be
reconstructed separately (Scheerschmidt, 1997a,b). This
provides the possibility of noise reduction if suitable
windows and filtering are applied and if the pixels are
precisely centred to avoid additional phase shifts. The
environment of the reflections included in the filtering
process has to be chosen such that the information of local
distortions folded with the reflections will be transferred to
the reconstructed partial waves. The reconstruction of the
single reflections causes modulus and phase to be dis-
tributed in the partial waves, which is the presupposition of
the inverse algorithm discussed in the following,

Figure 1 demonstrates the Fourier spectrum and the
single-reflection reconstruction using an experimental
hologram of a £13 (001) tilt grain boundary in gold
(0=22-6°, see Orchowski et al., 1995: Orchowski & Lichte,
1996) and preliminary common work (Orchowski et al.,
1993). The Fourier spectrum of the hologram is given in
Fig. 1(a); the pairs of the reflections used for the recon-
struction are indicated with the corresponding reciprocal
lattice vectors. To reconstruct the particular plane waves
the single reflections as indicated in the spectrum of the
hologram are separated and fltered through a Gaussian
mask. Figure 1(b) shows the reconstructed real space
wavefunction of the single reflections as the real part
(REA) and Fig. 1(c) as the imaginary part (IMA) of the
particular plane wave directions, ie. for the reflections
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Fig. 1. Reconstruction of single reflections of a £13 (100) Au grain boundary, separately for both grains denoted by 1 and 2, respectively: (a)
Fourier spectrum of the hologram (0-05nm fringes, A. Orchowski, University Tiibingen (Orchowski & Lichte, 1996); with indices of the
reflections and asymmetric intensities in the sideband showing the mistilted orientation; (b) real (REA) and (c) imaginary (IMA) part of
the partial waves, separately for grains 1 and 2, respectively, reconstructed from the separated and Gaussian filtered reflections.

chosen of types 000, {200} and {220}, respectively. The
single reflections are denoted by 1 and 2 according to grains
1 and 2, respectively; in the upper rows grain 1 is excited, in
the Jower ones it is grain 2. The reconstructed amplitudes of
the reflections can be interpreted directly as bright- and
dark-field images of the grain boundary. The real and
imaginary part gives the same information as amplitudes
and phases without, however, the phase wrapping problem
according to the multivalued phases. The reconstruction of
the higher-order reflections is impossible here because of the

lower intensity of the latter and the mutual overlap of the
autocorrelation and the-sideband. The modulation by lower
frequencies is due to the local bending of the sample or to
thickness oscillations, and contains the information needed
for the following retrieval procedure.

3. Dynamical electron diffraction as an inverse problem

Assuming that the object wave is reconstructed free of
aberrations, as discussed in Section 2, or that the scattering
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is performed under diffraction contrast conditions, the
influence of the microscope imaging process itself can be
neglected for the surrounding of the reconstructed single
reflections. Thus the image contrast is determined solely by
the interaction of the electrons with the almost periodic
object potential. The microscope information limit, however,
restricts the possibility of reconstructing higher-order
reflections, which results in the incompleteness as well as
underdetermined inverse problems discussed later,

‘The interaction of electrons with a crystalline object is
described on the basis of a periodic potential with the
electron structure factors such as the expansion coefficients
and the Bloch-wave method for solving the high-energy
transmision electron diffraction. Different formulations can
be given, using Bloch-wave or plane-wave representations of
the scattered waves, applying direct or reciprocal space
expansion, and direct integration or slice techniques, which,
in principle, are equivalent descriptions (van Dyck, 1985,
1989; Spence & Zuo, 1992). The object wave in terms of
modified plane waves with complex amplitudes ¢, yields

o(R) = T, e2miK+OR+5g) o)

with reflections g, excitations s, wave vector K (corrected
for refraction) and thickness ¢ of a parallel-sided object. The
amplitudes ¢, are constant with respect to z in the vacuum
outside the object, which means that the plane waves are
the stationary solutions of the wave equation. Within the
crystal, however, the amplitudes of the modified plane waves
¢y are z-dependent according to the Ewald pendulum
solution as described by the Bloch waves, which are the
stationary solution within the periodic potential.

The basic equations of the Bloch-wave presentation
in- forward scattering approximation are given by the
eigenvalue system

TAgnCy — Gy = 0, with 2K,Ag, = Kisggn — Ve (2)

yielding the amplitudes ng of the jth partial wave and its
‘anpassung’ 4% to the dispersion of the lattice as a function
of the lattice potential (Fourier coefficient V,) as well as the
relative orientation of the object with respect to the electron
beam incidence K. With these eigenvalues and vectors, for a
plane parallel perfect crystal of thickness t the complex
amplitudes ¢ of Eq. (1) are given directly in matrix form by

& =CXC™'9, (3)

where ® =[¢,] and 4 are the vectors of the amplitudes of the
exit and the incident waves, respectively, and X represents
the diagonalized scattering matrix exp(2wiAt).
Furthermore, using the deformable ion approximation
a crystal lattice defect can be included by its elastic
displacement field u as a phase shift of the Fourier
spectrum of the crystal potential. The evaluation of the
guantum-theoretical scattering problem using the high-
energy forward scattering approximation yields a parabolic
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differential equation system for vector & of the complex
amplitudes of the elastically scattered electron waves:

38/2z = (V> + V[®]), 4)

with V2= {iK, Ve — 20K+ £)V, } 812K, + 2m(sy — 55)2
Viy=(0/0%,0/0y0; K,=K,-+g,+s, and the potential
V=V+iV" including the lattice potential V' and the
absorption V" (one electron-optical potential approximation
of inelastic scattering).

In addition, boundary and initial conditions have to be
applied. The linearized high-energy approximation directly
fits ¢4(R,2) at the crystal exit surface to ¢o(R) outside,
demanding |¢4(R,0)| =850 at the entrance surface,
whereas the continuity of the derivatives has to be omitted
in the linearized case. It enables one, however, to fit the
unknown displacements at the exit foil surface by using
Eq.(4) without potential outside and inverting Eq.(4)
directly at the exit surface. Instead of boundary conditions
one can assume a periodic continuation within the slab to
describe large extended crystals. The differential Egs. (4)
allow a diffusion-like interpretation and can be discretized
using standard difference algorithms. Within the crystal the
difference equations are equivalent for backward and
forward integration with respect to the beam propagation,
thus being insufficient for determining both the wave
amplitudes and the elastic displacement field. One of the
difference equations, however, can be replaced applying the
continuity equation. At the exit surface, a further relation is
given applying the forward integration with vanishing
potential and the backward integration to ensure the
continuity of the derivatives. An algebraic equation system
results, which together with the periodic boundary condi-
tions and the initial conditions is exactly determined. Thus,
in principle, the retrieval of the displacements is given as a
particular inverse problem implying finding the root of a
function given by an incomplete Fourier transform (see
Scheerschmidt & Knoll, 1994, 1995). Such an inverse
problem is ill-posed because only one equation has to be
solved for the vectorial displacements and the spectrum
considered is incomplete and noisy.

The eigenvalue system for perfect crystals, Eq. (2), can be
linearized by applying perturbation methods. Assuming
that the eigenvalues vy are nondegenerated, and by analogy
with Eq. (3}, the perturbation solution may read

¢=TET™4, 5)
where the matrices are given by
T'=C (1 +A4), E={exp(2wi\t)} and
A=+ A5y} + AT Uy —w)A ®)

with {} indicating a diagonal matrix here and in the
following. ’
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As diagonal elements the perturbation matrix
Agn=(AK.g){6gn} +iAVy,  contains the  deviation
AK =K -K, of the orientation K from that of the original
unperturbed eigenvalue system K, (starting value for the
retrieval). The nondiagonal elements describe a perturba-
tion of the potential as, for example, according to optical
absorption.

Starting from approximate values of thickness t, and
beam orientation K, = (Kyo.Kyo) gained from a priori knowl-
edge or by analysing, for example, the asymmetry of the
single reflections reconstructed from the holographically
retrieved wavefunction, the perturbation solution is
valid within certain intervals around t, and (KeorKiyo).
Equation (5) can then be expanded in a Taylor series
yielding

Bt Ky, Ky) = (85 Ko, Kyo) + (t — t,)00/5¢
+ (K¢ — Ky Ky — Kyp)grades. (7)

The derivatives can be gained directly from Eq. (6) using
equivalent abbreviations:

Sp/St = T.55/6tT 10 (8)
and

gradi = (grad, " — I'"! grad, .5 + T.grad,Z). 1 4.
“

The linearized Eq.(7) together with the analytical
expressions (8,9) enable the inverse solution:

(K, Ky) = Mgy [¢5% — g7, (10)

where the matrix is given, for example, by the Penrose—
Moore inverse Miy=(M"M)™M” which is repre-
sented analytically using the matrix of the coefficients
M= (6%/5t,gradx®) of Egs. (8,9). The series expansion (7) as
well as the resulting formalism (10) can be extended to
include also the derivatives of deviations from potential
coefficients, which are omitted here for the sake of simplicity.
This means that additional unknown object parameters can
be included in the retrieval procedure as far as the problem
remains overdetermined with respect to the unknowns.

4. Regularized solutions of the inverse scattering problem

Algorithm (10) is the solution to the inverse problem
concerning the local thickness and orientation analysis. The
regularized inverse iteration can be applied directly to each
pixel in the real space representation of the single reflections
reconstructed from the hologram. On an a-priori assump-
tion for the basic eigenvalue system Eq.(2) which may
describe the experimental situation, ie. the number of
reflections which can be observed, the retrieval starts with
suitable local thickness t, as well as incident beam
orientation (Kyo,Kyo). The resulting values of thickness ¢
and orientation (K,.K,) are probably refined if Eq.(10) is

applied to the complex measured amplitudes (real and
imaginary part of the plane waves) of each image pixel and
each reflection g. Figure 2 demonstrates the applicability
using the single reflection wave reconstruction of Fig. 1 and
based on a nine-beam eigenvalue system to model the
diffraction behaviour. Here, no further assumption was
made as to the initial thickness t,. The best fit was revealed
by searching the absolute minimum of the defect of the
vector norm at an extended thickness interval. Figure 2,
upper row, shows two relatively flat thickness regions,
corresponding to the object plateau and the border of the
hole in the sample. The two regions are separated by a very
noisy region, which characterizes the wedge-shaped border
itself. The retrieved incident wave vector K(i,j) for each pixel
(L.j) shows oscillations with the pixel numbers (middle and
lower rows, x- and y-components, respectively), caused by
the bending of the lattice planes, which results from the
relaxation of the grain boundary owing to an additional
twist component. Different initial orientations of Ky = (0-51,
0-71, 0-0) in Fig. 2(a) and of Ky =(-0-28, 1-21, 0:0) in
Fig.2(b) yield very noisy results in thickness ¢ and
orientation (K,,K,) for the 64x64 pixels retrieved. Never-
theless, both cases show almost the same values, ¢ =0 77§
and t=0 for the plateau of the object and the hole,
respectively. The application of the generalized, but non-
regularized, Moore—Penrose inverse results in nonstabilized
inverse solutions, as shown. In addition, the eigenvalue
solution cannot describe the region between the two grains,
ie. the grain boundary itself. This region will later be
included, applying the discretized differential equations to
retrieve the displacement field of the interface dislocations.
For the retrieval procedure based on the eigenvalue system
the grain boundary itself occurs as a modelling error in the
mathematical sense.

The inversion proposed is based on the linearization and
the fact that the problem is overdetermined with respect to
the unknowns but underdetermined if the noise is included,
resulting in a least-square minimization of a suitable vector
norm of the defect (Louis, 1989; Bertero (1989), e.g.

|| 3P — )| = Min. (11)

As the iteration procedure seems to be amplifying the
noise, regularizations should be used to enhance the
stability of the procedure. The most general regularization
may be of the Ivanov-Phillips-Tichonov-type (see, for
example, Bertero, 1989),

||¢I>eXp _ ‘I)pmliz 4 EHZHz :(chp _ q,pert)+cl(q)exp _ épert)
+¢27C,Z = Min. (12)

While the Moore—Penrose inverse minimizes the defect,
an additional constraint here allows one to weight the
measured data by C; and to smooth the solution
Z=(t,K.K,) by C,. Using the Moore—Penrose or similar
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a

‘ fig. 2. Nonstabilized iteratively determined local sample thickness ¢ and beam orientation (K..K,) as functions of the pixel coordinates 8]}

retrieved from the reconstructed reflections of the experimental hologram in Fig. 1 for arbitrary starting values of thickness ¢ (resulting
in stable solutions t=0 in the hole, and t=0-77¢ on the plateau) and given start values of orientation K=(0-51, 0-71, 0-0) and

' K=(=0-28, 1:21, 0-0) for the left (a) and right (b) columns, respectively.
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generalizations always allows ill-posed problems with discrete
data to be transformed to well-posed, but mostly ill-conditioned
ones. The solution exists and is unique; however, it is mostly
unstable. The generalized solution may be considered an
average of the true solutions, the resulting generalized inverse
matrix including the regularization matrices may be -

My, = (MTC M+C,) ™M, (13)

with the suitable regularization factor e and matrices C; and

000 i

AMP

4-beam

PHA

AMP

7-beam

PHA

Cy, respectively. The iterative solution of Eq. (10) with this
generalized inverse (13) yields a self-consistent approach.
The generalized approach represents the maximum-
likelihood solutions. if the weight matrices C; are suitably
chosen with respect to the components g according to the
reflections in . Gaussian distributed noise can be described
by umit weights (C; equals unit matrix), Poisson distributed
noise demands weights inversely proportional to the intensity of
the reflections (C, is diagonal with reciprocal intensities).

111 002
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In image processing, however, the regularization is
described as a procedure smoothing the pixels (i) (Huang,
1975). A solution with small second derivatives with
respect to neighbouring pixels tends to be more accurate
(C; has 2 as diagonals and —1 as first off-diagonals). In
general, any constraint C; which is quadratic may be used
to yield a solution resembling Egs. (10) and (13).

Assuming that the different weights can be separated
without a loss of generality, the weighting C, is given by
Wy, Wey with W|&|. The smoothing C, can be described
by matrix filters with respect to the pixels (i,f). A zero-order
smoothing (C, equals unit matrix) is equivalent to outlier
detection or avoiding leaverages (Rousseeuw, 1977).

Figures 3—5 demonstrate the influence of smoothing and
regularization to a synthetically generated object wave. The

plane waves presented in Fig. 3 by using amplitudes and
phases of the reflections 000, 111, 111, 002 are calculated
assuming a plane parallel object of thickness t= 2-55¢ and
four- or seven-Bloch-wave scattering (PFig. 3a,b, respec-
tively). The object is described by the potential coefficients
of GaAs and with preferentially [110] orientation, ie. for a
polar orientation. The actual orientation is a linear function
of the pixels, L.e. the object is characterized by a bent crystal, and
the incident beam varies with respect to the crystal according
to K=K, -+ 0-01(+ 20)[001]+0-01( + 20)[110], with the
pixel coordinates (i.f) varying from 1 to 64. Figures4 and 5
show the retrieval of thickness t(ij) and beam orientation
K(ij) as functions of the image pixels. The retrieval
procedure is applied with a four-Bloch-wave model to the
simulated data of Fig. 3, without (Fig.4a) and with

ig. 3. Simulated plane wave amplitudes (AMP) and phases (PHA) of the reflections 000, 111, 111 and 002 for [110]-orientated GaAs with

thickness t==2-55¢, varying beam orientatio: i
s n AK,,=0-01(i+ 20)[001] +0-01(G+ 2 i i i 8) i
four- and seven-Bloch-wave scattering in (a) and (tlj) respectively. oo (' 2DLIOTwith the pixl coordnates (). and R

Fig. 4. Comparison of local sample thickness ¢ retrieved from Fig. 3(a) using different smoothing matrices and regularization parameters e: (a)
without smoothing, e= 107%; (b) smoothing the first derivative, e= 1077 (c) smoothing the second derivative, e= 107%; (d) as (c) retrieved
from Fig. 3(b).
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fig. 5 Local sample thickness t and beam orientation (K. K,) as
unctions of the pixel coordinates (i,j) retrieved from the simulated
plane waves of Fig. 3(a) with smoothing the first derivatives and for
a regression parameter of e=10"%,

different smoothings (Figs. 4b~d and Fig. 5) and different
regularizations: e=10"" in Fig. 4(ab) and e=10"* in
Figs. 4(c,d) and 5. As assumed for the simulation of the
We-ives the thickness is approximately constant and the
orientation shows the linear functionality. Nevertheless
the noise is reduced but not removed by the regularizationt
always sytematic errors additionally occur as stepwisé
changes of ¢ and K, which may be considered nonunique
ambiguous solutions of the inverse problem and tra.nsfor—
mation errors. The worst case of Fig. 4(d) demonstrates the
modelling error because the seven-beam case is insuffi-
ciently described by the four-beam model. The smoothing of
the first derivatives seems to be better than that of the
second ones, which, however, is also a function of the
regularization.

4. Ambiguities of the inverse solution and numerical
aspects

At least three reasons for ambiguities of the retrieval
p.rocedu.re can be discussed: (i) a periodicity of the
eigenvalues which keeps Egs.(3) or (5) invariant if v is
repliaced by y+n/t or X by N+n/t, respectively, with
arjmtra.ry integers n; (ii) a quasiperiodicity of the crystal
thickness which does not change Eqgs.(3) or (5) if ¢ is
replaced by t-+n/trace{y} or t+ n/trace{\} with integer n
sufficient large; and (iit) a numerical ambiguity if the matrix
of the coefficients M = (6&/6t,grady®) according to Egs. 8
and (9) yields the commutation relation M; M, = My M f.or
two different unknowns X;= (t,K;) with i = 1,_2. o

The periodicities of (i) and (i) in Eq. (3) — and similarly for
Eq.(5) — are immediately revealed by replacing 7 or t after
rearranging the equations as follows:

® = exp(2miAL)) = exp2miC{y}Ct)§
= C{expQmiyt)}C™'4, (14)

which reflects the diagonalization according to Eq.(2). Thus
the Periodicity of v in Eq.(14) can be related to a
quasiperiodicity of the orientation in A, which can be
described by a shift SK because C{n/iC 1 =8K.g/K, can
approximately be fulfilled for all reflections if the valués ofn
are equal and sufficiently large (similar to the quasi-
periodicity of the thickness in (i) according to a theorem
of Kronecker that a set of real numbers can always be
approximated by integers for sufficiently large common
factors). Condition (iii) is much more complex and will be
@alysed in detail in a forthcoming paper; however, the
existence of the numerical ambiguities can be foHowel:l by
symmetry arguments. In all three cases (i—iif) periodicities in the
mfeasured data yield ambiguities in the retrieved thicknesses and
orientations, Suitable regularizations will hopefully enable us to
restrict the solutions to plausible a priori data.
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The regularization parameter can be bounded (Bertero,
1989), but in the physically relevant problems such bounds
are too rough and should be estimated by numerical tests.
To study the confidence level of the solutions the retrieved
thicknesses and orientations are compared with those used
in simulated holograms, which have been performed for
either perfect crystals with increasing thickness and linearly
varying orientation, or for a theoretical grain boundary (see
Scheerschmidt, 1997b). To check the reliability and accuracy
by using simulated inputs is advantageous as one can
compare directly well-known numbers and thus determine
the regularization parameter for the best fit. One can use
different distance measures like the squared differences, a P
test or cross correlations. Robust measures are very fast and
stable: the simple sign test sgn(Z;—<Z>)<¢ of all pixels or the
product of neighbouring pixels, for instance, allows one to
detect sytematic errors, whereas weights which are controlled
by the regression coefficient between retrieved and exact data
(Rousseenw, 1987) enable the finding of outliers and
leaverages. No test may be considered perfect or superior,
because a large number of differences is always reflected by
only one number. Figure 6(a) shows different log(x?)
measures as functions of test parameters but without
smoothing; Fig. 6(b) repeats the tests 35-38 as function of
the regularization parameter e with weights proportional to
the intensities and including pixel smoothing of the second
derivative. Here x; reflects the defect of the norm in Eq.(12),
i.e. the deviations given by the retrieval procedure itself, x2 is
the normalized standard x? test, x3 the reciprocal regression
value, s; and s, the corresponding sign tests (with and
without outliers for upper and lower curves, respectively).
Tests 1—18 are used for normalizing the different reflexes and/
or applying averages over the pixels and the reflexes for
varying normalization weights. In tests 19-38, additionally
the regularizations e = 1075,107% 1073 and 1072 are applied
for weights C; directly or reciprocally proportional to the
amplitudes and intensities of the reflexes or to unity
respectively. In the tests 39-54 similarly the retrieval for
constraints including the exact known a priori values are
given, whereas in the tests 54-60 the C;, C; and a priori
constraints are varied. The calculations demonstrate that
different normalizations and averages have only small
influences on the accuracy and smoothing; however, a
suitable a priori constraint minimizes the error. In addition,
it shows clearly that the smoothing in (b) strongly increases
the errors and that an optimum regularization exists. Further
systematic calculations are necessary to find out the best
regularization ¢, ie. the compromise between accuracy and
stability of the retrieval procedure.

Conclusions

The direct solution of Eq. (10), i.e. the explicit evaluation of
thickness and orientation from measured data, results in a
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Fig, 6. Confidence tests for dilferent log (x%) and robust sign s mea-
sures of retrieved test data: (a) as a function of test parameters (see
text) without smoothing; (b) as a function of the regularization
parameter € and smoothing the second derivative.

particular inverse problem of the first kind. Thus, from the
mathematical point of view, the retrieval of object para-
meters from reconstructed plane waves scattered by the
object is an ill-posed problem. It enables, however, a local
linearization based on perturbation methods which trans-
forms the difficulties of ill-posedness to the mathematical
problem of overdetermined equation systems, i.e. to well-
posed but ill-conditioned problems. The difficulty with the
numerical stability of the direct solution is equivalent to the
high calculation necessity in applying optimistic search
strategies to find the best fit by image matching techniques in
the many-dimensional parameter space. Normalization and
regularization require additional information about the periodi-
city of the object as the basic assumption, and suitable starting
values of thickness and orientation, in order to make the
process stable and continuous, to enable smoothing and outlier
detection, and to restrict the manifold set of solutions possible.
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