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stract. Inverse problems as direct solutions of electron scattering equations can be
luced using either an invertible linearized eigenvalue system or a discretized form
the diffraction equations. The analysis is based on the knowledge of the complex
‘tron wave at the exit plane of an object reconstructed for single reflections by
‘tron holography or other wave reconstruction techniques. In principle, this enables
. direct retrieval of the local thickness and orientation of a sample as well as the
nement of potential coefficients or the determination of the atomic displacements,
1sed by a crystal lattice defect, relative to the atom positions of the perfect lat-
». Considering the sample orientation as perturbation the solution is given by a
ieralized and regularized Moore-Penrose inverse. Extracting solely the atomic dis-
cements the latter are given by the zeros of a function with an incompletely known
arier spectrum. The numerical algorithms resulting from the fundamental relations
ply ill-posed inverse problems.

Introduction

verse problems are difficult, always fascinating, and in most of the cases ill
improperly posed (Tichinov and Arsenin (1977), Lavrentiev (1967)). Ill or
properly posed means that one or all requirements are violated that usually
aracterize physics, i.e. existence, uniqueness and stability of a solution. As
‘en occurring in many physical investigations, in the mathematical sense, the
-ect solution of the diffraction equations implies an inverse problem. Although
e inverse problems violate especially the existence of unique and continuous
lutions to arbitrary data they are of great practical importance, if the trial-
d-error solution demands a large variety of possible solutions and models to be
sted, mostly providing a better insight into the basic relations of the physical
lenomena.

For instance, the imaging of crystal defects by high-resolution transmission
sctron microscopy or with the help of electron diffraction contrast technique
well known and routinely used. Though the theoretical image calculations
ways tend to establish standard rules of interpretation, a direct and phe-
ymmenological analysis of electron micrographs is mostly not possible, thus re-
iiring the application of image simulation and matching techniques. Images are
odelled by calculating both the interaction process of the electron beam with
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the almost periodic potential of the matter, and the subsequent Fourier imaging
process including the microscope aberrations. The images calculated are fitted
to the experiment by varying the defect model and the free parameters. This
trial-and-error image matching technique is the indirect solution to the direct
scattering problem applied to analyse the defect nature under investigation.

Electron holography or other reconstruction techniques (Lichte (1986), Lichte
(1992), Coene et al. (1992), van Dyck et al.(1993)) permit the determination of
the scattered wave function at the exit surface of the crystal directly out of
the hologram or from defocus series up to the microscope information limit
owing to the noise in the phase distortion. Especially the sidebands of a Fourier-
transformed hologram represent the Fourier spectrum of the complete complex
image wave and its conjugate, respectively, from which the object wave can
be reconstructed. Thus, both the reconstructed amplitudes and phases can be
compared to trial-and-error calculations (Lichte (1991), Lichte et al. (1992)).

In previous papers (Scheerschmidt and Hillebrand (1991), Scheerschniidlt
and Knoll (1994), Scheerschmidt and Knoll (1995a), Scheerschmidt and Knoll
(1995b), Scheerschmidt (1997)) it was demonstrated that the local thickness and
orientation can be calculated directly from the wave function reconstructed at
the exit surface of the object instead of using trial-and-error simulation techni-
ques. In principle, the analysis holds good also for the retrieval of the object po-
tential, or if solely the positions of the atomic scattering centres are evaluated.
The inverse problems, however, generally dealing with insufficiently measured
data always require physically related information a priori. It was shown that
the knowledge of both the amplitudes and phases of a sufficiently large number
of plane waves scattered by the object as well as the partial knowledge of the po-
tential of the perfect crystal structure imply the possibility of directly retrieving
object information, instead of using trial-and-error simulation techniques. Two
approximations are discussed to solve the resulting inverse scattering problem
without reconstructing the whole crystal potential:

First, the special problem of retrieving the local sample orientation is solved
on the basis of the perturbation approximation for perfect crystals, and by ap-
plying regularized and generalized matrices to invert the resulting linearized
problem. The corresponding iteration procedure enables the direct analysis of
the moduli and phases if a sufficient number of plane wave amplitudes can be
separated yielding local thickness and bending of the object for each image pixel
(Scheerschmidt and Knoll (1995b), Scheerschmidt (1997)).

Second, based on the knowledge of the reconstructed complex electron wave
and using a discretized form of the diffraction equations, an alternative method 1is
developed (Scheerschmidt and Knoll (1994), Scheerschmidt and I{noll (1995a ) ).
yielding an algebraic equation system for the complex amplitudes and the elastic
displacements. In principle, this system enables the direct retrieval of the atomic
displacements, caused by a crystal lattice defect, relative to the atom positions
of the perfect lattice. The equations are invertible provided the completeness of
the plane waves is valid (continuity of the electron current). A special inverse
problem of electron scattering is deduced considering solely those atomic dis-
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cements given by the zeros of a function with an incompletely known Fourier
:ctrum from the scattered electron wave of which the displacement field of a
stal lattice defect can, in principle, be retrieved.

The present paper outlines the fundamental relations for both special inverse
blems describing some first numerical experiences related to the solution of
. direct retrieval of local thickness and orientation. Some numerical aspects
considered as, e.g., the stability of unique inverse solutions in terms of noise,
1 the regularization of the problem.

Physical basis: Dynamical diffraction and holographic
we reconstruction

e HREM image contrast is mainly determined by two processes: First, by the
:tron diffraction owing to the interaction process of the electron beam with
almost periodic potential of the matter and, second, by the interference of
plane waves leaving the specimen and being transmitted by the microscope.
suming that the object wave is reconstructed free of aberrations or under
raction contrast conditions the influence of the microscope imaging process
If can be neglected. Thus the image contrast is solely determined by the
sraction of the electrons with the object potential.
The interaction of electrons with a crystalline object is described on the ba-
of a periodic potential with the electron structure factors as the expansion
flicients and the Bloch-wave method for solving the high-energy transmision
stron diffraction. Different formulations can be given, using Bloch wave or
ne wave representations of the scattered waves, applying direct or reciprocal
«ce expansion, and direct integration or slice techniques, which, in principle,
equivalent descriptions (van Dyck (1985), Spence and Zuo (1992), van Dyck
89)). The object wave in terms of modified plane waves with complex ampli-
les ¢g yields

o(R) = Z ¢g€2ri((k+g)R+Sgt) (1)

9

with reflections g, excitations sg, wave vector k, and thickness t of a parallel-
ed object, R = (x,y). The amplitudes ¢g are constant with respect to z in the
uum outside the object, which means that the plane waves are the stationary
utions of the wave equation. Within the crystal, however, the amplitudes of
- modified plane waves ¢g are z-dependent according to the Ewald pendulum
ation as described by the Bloch waves, which are the stationary solution
hin the periodic potential.

The basic equations of the Bloch wave presentation in forward scattering
>roximation are given by the eigenvalue system

> AgnCh —7Cg =0, with 2k, Agp, = (2K.g — gz)égh ~Vgp (2
h
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() of the 1 th partial wave and its “anpassung”

yielding the amplitudes Cg
7t to the dispersion of the lattice as a function of the lattice potential (Fourier
coefficient Vg) as well as the relative orientation of the object with respect to
the electron beam incidence K. With these eigenvalues and vectors, for a plane
parallel perfect crystal of thickness t the complex amplitudes dg of eq. (1) are

directly given in matrix form by

$=CXC8 (3)

where & = [@g] and 6 are the vectors of the amplitudes of the exit and the
incident waves, respectively, and X represents the diagonilized scattering matrix
62 7r£At_

Using furthermore the deformable ion approximation a crystal lattice defect
can be included by its elastic displacement field v as a phase shift of the Fourier
spectrum of the crystal potential. The evaluation of the quantum-theoretical
scattering problem using the high-energy forward scattering approximation (see,
e.g., (Anstis (1989), Howie and Basinski (1968)) for the derivation and the ex-
plicit form of the equations) yields a parabolic differential equation system for
vector @ of the complex amplitudes of the elastically scattered electron waves :

08/0z = (A+V[e'8Y])d (4)

with A = {ik.V? —2(k + g)V}/2k'y + 27(sy, — sg)z . V = (8/9z,0/0y,0),
.=k, +9g:+sg and the potential V=V"+iV” including the lattice potential V'
and the absorption V” (one electron-optical potential approximation of inelastic
scattering) as well as the diagonal matrix of the defect phase shifts.

In addition, boundary and initial conditions have to be applied: The lin-
earized high-energy approximation directly fits ¢g(R.,t) at the crystal exit sur-
face to ¢g(R) outside, demanding |¢g(R,0)| = égo at the entrance surface,
whereas the continuity of the derivatives has to be omitted in the linearized
case. It enables one, however, to estimate the unknown displacements at the
exit foil surface by using eq. (4) without potential outside and inverting eq. (4)
directly at the exit surface:

{(V[eBY]d = 248} ., (5)

Instead of boundary conditions one can assume a periodic continuation to
describe large extended crystal slabs, i.e. ¢g(z,y,z) = ¢g(a + X,y,z) and
dglz,y,z) = ¢g(z,y + Y, z), with slab extensions XY approaching infinity.

Holography with electrons offers one of the possibilities of increasing the reso-
lution by avoiding microscope aberrations. It also enables the complete complex
object wave to be restored. Image plane off-axis holograms are recorded in a
microscope which is equipped with a Mollenstedt-type electron biprism inserted
between the back focal plane and the intermediate image plane of the objective
lens (Lichte (1986), Lichte (1991), Lichte (1992), Lichte et al. (1992)). The ob-
ject is arranged so that a reference wave outside of it is transferred through
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microscope, and owing to a positive voltage of the biprism both waves mu-
lly overlap in the image plane creating additional interference fringes. The
nsity of the latter is modulated by the modulus of the object wave, whereas
fringe position is varied by the phase of the object wave. Thus the recorded
rference pattern is an electron hologram from which both the modulus and
phase of the object wave can be reconstructed by optical diffraction or nu-
ical reconstruction. The reconstruction starts with a Fourier transform of the
»gram. Besides two sidebands in the central region of the Fourier spectrum
zero peak and autocorrelation occur, which is equivalent to a conventional
ractogram. The sidebands represent the Fourier spectrum of the complete
iplex image wave and its conjugate, respectively, from which the object wave
) can thus be reconstructed by separating, centring, and applying the in-
se Fourier transform including a reciprocal Scherzer filter with damping and
roscope aberrations (Lichte (1991), Orchowski et al. (1995)).

In the following it is important that, besides the whole sideband, each single
action of sufficient intensity can be reconstructed separately (Scheerschmidt
37)). This provides the possibility of noise reduction if suitable windows and
ring are applied and if the pixels are precisely centred to avoid additional
se shifts. The environment of the reflections included in the filtering process
to be chosen such that the information of local distortions folded with the
ections will be transferred to the reconstructed partial waves. The reconstruc-
1 of the single reflections causes modulus and phase to be distributed in the
tial waves, which is the presupposition of the inverse algorithm discussed in
following.

Figure 1 demonstrates the wave and the single-reflex reconstruction using a
oretical hologram simulated for a £=13 (100) tilt grain boundary in gold,
chis relaxed by molecular dynamics. Fig. 1(a) shows the simulated hologram,
| Fig.1(c), an enlarged region with the hologram fringes extending from the
tral part of the boundary, with the atomic columns around the interface. The
irier spectrum of the hologram is given in Fig.1(b), and the sideband selected
reconstruction in Fig.1(d), the pairs of the reflections are indicated with
corresponding reciprocal lattice vectors. Fig. 1(e) presents the reconstructed
| space intensities of the single reflections in amplitude (AMP) and phases
IA), separately for the two grains denoted 1 and 2, respectively: in the upper
* the left grain is excited, in the lower row, the right one. The reconstructed
plitudes of the reflections can directly be interpreted as bright and dark-field
1ges of the grain boundary.

Fig. 2 shows one sideband of the Fourier spectrum of the experimental holo-
m ((a), selection on the left hand side) of a £=13 (100) tilt grain boundary
sold (6 = 22.6°, see (Orchowski et al. (1995), Orchowski and Lichte (1996))
| preliminary common work (Orchowski et al. (1993))) and the reconstruc-
1 (b,c) of the single reflections as indicated in the spectrum of the hologram
sred through a Gaussian mask. The upper rows (b) show modulus (AMP)
| phases (PHA) of the particular reflections chosen of types 000, {002}, and
0}, thus presenting the reconstruction of the corresponding amplitudes dg
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e

struction of single reflections of a simulated MD-relaxed =13 (100} Au
grain boundary

in the centre,

am. For comparison in the lower rows (c) the corresponding real
h

with

vithout the phase wrapping problem according
e reconstruction of the higher-order reflections i
lower intensity of the latter and the mutual over-

and 2, respectively. The shift of the fringes at
dicates the phase shift owing to the crystal defect.
frequencies is due to the local bending of the sample
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220, 020, 220, 020, 220, 200,

220, 020, 220, 020, 220, 200,

. 2. Reconstruction of single reflections of a ¥'=13 (100) Au grain boundary, sep-
ely for both grains denoted by 1 and 2, respectively: (a) Fourier spectrum of the
gram (0.05 nm fringes, A. Orchowski, University Tubingen (Orchowski and Lichte
16), Orchowski et al. (1993))), with indicees of the reflections and asymmetric in-
ities in the sideband showing the mistilted orientation, (b) reconstructed moduli
[P) and phases (PHA), (c) reconstructed real (REA) and imaginary (IMA) part of

partial waves.

Inversion by linearization and discretization

(2) can be linearized applying perturbation methods. Assuming that the
nvalues v are non-degenerated, and by analogy with eq. (3), the perturbation
ition may read

&=T=r"14. (6)

where the matrices are given by

‘= C(1+A4),Z = {2}, and A= v+ A&} + A7/ (vi =)} A. (D)

As diagonal elements the perturbation matrix .f’_\gh =(AK.g)+ iJVgh con-
is the deviation of the orientation AK from that of the original eigenvalue




|
{a) | (b) Perturbation
-beam solution (a) of moduli (AMP) and phases
| beam (g) with the corresponding perturbation
ntations with |s¢| > 1, e.g., where the perturba-
on, t=crystal thickne

ss, £=extinction distance).

ents describe a perturbation of the potential
ption. Fig. 3 demonstrates the validity of the
1. (6) with the exact solution {3) of the two-
| phases, for both reflections there are remarkable
>pendent of thickness t around the exact ori-
act two-beam excitation.

R . L R
thickness 1, and beam orientation (i‘,g . ;\y,, J
1alysing, e.g., the asymmetry of the single

cally retrieved wave function, the

tain intervals around to and (k;,, ky, ).
S
-]
P Fea By) = Olto, ke, ky, ) + (¢ 1,)06 /01 + (kz —kep by —ky )Vio.  (8)
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ion of the perturbation equation (6) at ¢,, ,. The series expansion (8) as
1s the resulting formalism (9) can be extended to include also the derivatives
viations from potential coeflicients, which are omitted here for the sake of
licity. That means, additional unknown object parameters can be included
e retrieval procedure as far as the problem remains overdetermined with
¢t to the unknowns.

lgorithm (10) is the solution to the inverse problem concerning the local
ness and orientation analysis, the regularized inverse iteration can directly
plied to each pixel in the real space representation of the single reflections
istructed from the hologram. On the suitable assumption of the basic eigen-
system (2) and starting with suitable local thickness ¢, as well as incident
vorientation (k.. kyo) the values of thickness t and orientation (k;, ky) are
ibly enhanced if eq. (10) is applied to the amplitudes and phases measured
ch image pixel and each reflection g.

igures 4 and 5 demonstrate the applicability using the single reflection wave
struction of Figs. 1 and 2, respectively. In both cases, the same nine-beam
value system was used to model the diffraction behaviour. Here, no further
nption was made as to the initial thickness ¢,. The best fit was revealed by
hing the absolute minimum of the defect of the vector norm at an extended
ness intervall. Fig. 4 results in a flat tickness t(i,j) as assumed for the
ation of the corresponding hologram. The retrieved incident wave vector
) shows oscillations with the pixel numbers, caused by the bending of the
e planes, which results from the relaxation of the grain boundary because
e additional twist component assumed. Different but small regularization
neters v (here v=.0001 was assumed) do not smooth the noise if solely the
intensity (see chapter 4) is regularized. In the case of retrieving from the
imental hologram, different initial orientations of Kg=(.51,.71,.0) in Fig.
nd of Kg=(-.28.1.21, .0) in Fig. 5b, yield very noisy results in thickness t
rientation (k;, ky) for the 64x64 pixels retrieved. Nevertheless, both cases
almost the same values t~ .77¢ and t=0 for the plateau of the object and
ole, respectively.

he differential equations (4) allow the diffusion-like interpretation and can
scretized using standard difference algorithms (Scheerschmidt and Knoll
), Scheerschmidt and Knoll (1995a)). An algebraic equation system results,
1 formally reads

B, 5,k —1) = F1{8(1.3.k), 8(i £ 1,j, k), (i, j + 1,k), v(i.j. k)} (11)

or the complex amplitudes @ and the elastic displacements v at the (xyz)-
points (1,3,k), (i£1.j,k), (1,j&1.k) and (i,j,k+1) representing the object. Pe-
¢ boundary conditions are assumed in x and y direction, whereas at the exit
wce, a further equation is given applying the forward integration of eq. (11)
ide the crystal and discretizing the symbolic equation (5).

Vithin the crystal the difference equations (11) are equivalent for backward
| and forward (k+1) integration with respect to the beam propagation. thus
¢ insufficient for determining both the wave amplitudes @(i,j,k) and the

>

ic displacement field v(i,j,k) at the grid points (i,j,k) considered. This be-
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wy et Ky(iyj) v

Fig. 4. Tteratively determined local sample thickness t and beam orientation (K-, Ky)
retrieved from the reconstructed reflections of the theoretical hologram in Fig. 1 for
arbitrary start values of thickness and given start values of orientation without regu-

larization.

64 0

Fig. 5. Non-stabilized iteratively determined local sample thickness t and beam orien-
tation (K., K,) retrieved from the reconstructed reflections of the experimental holo-
gram in Fig. 2 for arbitrary start values of thickness t (resulting in stable solutions
th=0 in the hole, and tp ~ -T7€ on the plateau) and given start values of orientation
Ko=(.51,.71,0) and Ko:(-.28.1.21,0) for the upper and lower rows, respectively.

comes also obvious by simply numbering the unknowns and the equations at each
node: for N beams, there are N unknown amplitudes and 3 unknown displace-
ments, and N relations according to egs. (11), using either (k-1) or (k+1). One of
the difference equations, however, can be replaced as follows: While the optical
potential in the reciprocal space representation is generally non-hermitian. the
hermiticity of the potential V’ and of the “absorption” V* yields the equation
of continuity for the whole current [ = ¥ ¢gdg”. The continuity equation may
then read

019z = 3V28" — 8°V28 + 3(k + g)VI - 26V [el8V]g (12)

The equation of continuity can be discretized by analogy with the discretiza-

tion of the differential equations above. The differential operator, however. yields
mixed terms with respect to different nodes ( 13.k) and (i+1j+1.k):
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Fo{v(i.j). (1.5, k+1),8(15.k). 81 £1,5,k),8(Lj+1.k)} =0  (13)

y analogy with tl}e Gelfand-Levitan-algorithm (see, e.g., ( Zakhariev and
0 (1990)))- an additional equation results by inverting the equation of con-
ty, which is a kind of completeness relation, yielding

% Qgezngv =0 (14)

1 eq. (13) as well as for the additional boundary condition previously dis-
d. Coefficients Qg are explicitely given in (Scheerschmidt and Knoll (1994)).
, in principle, the retrieval of the displacements v is given by the remai-
inverse problem (14), implying to find the root of a function given by an
aplete Fourier transform. '
he inverse problem (14) is ill-posed for two reasons: Only one equation has
solved for the vectorial root v(ij.k) at node (i,j,k), thus coplanar vectors
ve one component unconsidered. The spectrum Qg(ij.k) is incomplete and
. This results in unstable numerical solutions using standard algorithms to
he roots (viz. Newton-Raphson algorithm, genetic algorithms and neuronal
rrks), owing to the existence of a large number of subsidiary roots. Besides
umerical solutions, transforming eq.(14) yields iterative forms as a kind of
-regularization (Scheerschmidt and Knoll (1995a)). the system then refers
overdetermined system in the same manner as discussed above.

Numerical aspects

inversion proposed is based on the linearization and the fact that the prob-
s overdetermined with respect to the unknowns but underdetermined if the
is included, resulting in a least square minimization of a suitable vector

1 of the defect (Lois (1989), Bertero (1989)), e.g.,

[|@7P — $Pe™t|| = Min. (15)

s the iteration procedure seems to be amplifying the noise, the regulari-
ns should be further enhanced. Simple averaging of the retrieved thicknesses
orientations with values larger than a certain threshold omitted, avoids
ors and leverages, however, structural details, too, thus yielding incorrect
arization.

he stability of the procedure may be enhanced by using more general reg-
zations as, e.g., the Phillips regularization. The most general regularization
be of the Ivanov-Phillips-Tichonov-type (see, e.g., (Bertero (1989))),

P __ Qpert“2 + 7”ZH2 — (¢erp . épert)tcl(éexp _ Qperl) + ’)’ZTCQZ = Min

(16)
Thile the Moore-Penrose inverse minimizes the defect, an additional con-
1t here allows one to weight the measured data by C; and to smooth the
ion Z = (t,kg,ky) by Cy. Using the Moore-Penrose or similar general-
ms always allow ill-posed problems with discrete data to be transformed




82

to well-posed, but mostly ill-conditioned, problems: The solution exists and is
unique, however, mostly unstable. The generalized solution may be considered
an average of the true solutions, the resulting generalized inverse including the

regularization matrices may be

Miny = (MTC1M 4+ ~Cy) ' MT (17)

with the suitable regularization factor v and matrices C; and Cs, respectively.
The iterative solution of eq. (11) with this generalized inverse (17) vield a self-
consisting approach.

The generalized approach represents the maximum-likelihood solutions if the
weight matrizes C) are suitably chosen with respect to the reflections g. Gaussian
distributed noise can be described by unit weights, Poisson distributed noise
demands weights inversely proportional to the intensity of the reflections.

In image processing, however, the regularization is described as a procedure
smoothing the pixels (i,j) (Huang (1975)) : A solution with small second deriva-
tives with respect to neighbouring pixels tends to be more accurate. In general |
any constraint Cy which is quadratic (Huang (1975)), may be used to yield a
solution resembling eqs.(10) and (17).

Assuming that the different weights can be separated without a loss of gener-
ality, the weighting C is given by WghTWg'h' with W~ [8|”. The smoothing C’
can be described by matrix filters with respect to the pixels (i,j). A zero-order
smoothing is equivalent to outlier detection or avoiding levarages (Rousseeuw
(1977)).

The regularization parameter can be bounded (Bertero (1989)), but in the
physically relevant problems such bounds are too rough and should be estimated
by numerical tests. To study the confidence level of the solutions the retrieved
thicknesses and orientations are compared with those used in simulated holo-
grams, which have been performed for either perfect crystals with increasing
thickness and linearly varying orientation, or for the theoretical grain bound-
ary of Figs.1 and 4 relaxed by molecular dynamics. To check the reliability and
accuracy by using simulated inputs is advantageous as one can directly com-
pare well-known numbers and thus find out the regularization parameter for the
best fit. One can use different distance measures like the squared differences or
the regression coefficient r = €OV Zretrieves Ziheory )/ (Oretriene Otheory) assuming
a linear hypothesis for the fit. a x? test or cross correlations. Robust measures
are very fast and stable: the simple sign test s; = Tsgn(Zij— < Z >)/N < 1
of all pixels or the product s, of neighbouring pixels, for instance allow one
to detect sytematic errors. whereas weigths which are controlled by the regres-
sion coefficient between retrieved and exact data (Rousseeuw (1977)) enable
the finding of outliers and leverages. No test may be considered to be perfect
or superior, because always a large number of differences is reflected by only
one xmmb_er. Fig. 6 shows in (a) the regression coefficient r, the sign tests s,
2, and different log(y2) measures as function of testparameters (x1 from the
convergence error of the retrieval procedure, X2 with and x3 without outlier de-
tection). Figs. 6(b) and (c) represent the same log(y?) measures as function of
?nhe regularization parameter 5 without and including pixel smoothing, respec-
tively, ie. (b) with Cy =Cy = I and (c) smoothing of the second derivative
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3. Confidence tests for different measures (regression r, sign tests s1, 82 and log(x?)
rieved versus simulated data as function of test parameters (a, see text) or as
ion of the regularization parameter v: (b) no smoothing ¢, = (> = I and (c)
thing of the second derivative Cy = 1,0 = (§i—i 41,;—j,+1 — 26iiy j—ia)

Cy=1,Cy = [bii,+1,j—j,41 — 26i-i, j—j,]. Test 1 in (a) for comparison is
lated without any smoothing and normalization. The tests 2-18 are applied
ormalizing the different reflexes and/or using different averages over the
s and the reflexes, resp., always with p = 0, £1, £2. In the tests 19-38 addi-
lly the weights C; are proportional to the amplitudes and intensities of the
es, resp, and v = 107°,107%,107%,10~2. For the test 39-53 the regulariza-
s related to the a priori information instead of the maximum norm itself,
y = 107%,107%,1073. Clearly can be seen, that the smoothing increases
crors, whereas sytematic errors and low regression coefficients are resulting
invaluable normalization. Further systematic calculations are necessary to
ut the best regularization v, i.e., the compromise between accuracy and
ity of the retrieval procedure.

Zonclusions

the direct solutions (11) and (12,14), i.e. the explicit evaluation of thick-
ind orientation as well as the retrieval of the atomic displacements from a
structed electron wave function at the exit surface of an object, result in
:ular inverse problems of the first kind, viz. the analysis of object parame-
‘om measured data. Thus, from the mathematical point of view the retrieval
dure is an ill-posed inverse problem requiring additional information about
eriodicity of the object as the basic assumption, the thickness, the orienta-
nd the unknown reconstructed displacements in order to make the process
: and continuous, to avoid singularities, and to restrict the manifold set of
ons possible. The procedure described has transformed these difficulties to

]
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the mathematical problem of overdetermined equation systems and of determin-
ing the roots of a function with an incomplete Fourier transform. Normalization
and regularization of the solutions enable smoothing, stabilization and outlier

detection.
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