K. ScueerscaMIDT and R. HILLEBRAND: Calculated Defocus Diffraction Contrast 465

phys. stat. sol. (a) 91, 465 (1985}
Subject classification: 1.1; 1.4; 10

Institut fir Festkorperphysik und Elektronenmikroskopie
der Akademie der Wissenschaften der DD R, Halle (Saale)?)

Calculated Defocus Diffraction Contrast
and Lattice Fringe Imaging of Small Crystal Defeets

By

K. ScaerrscuMipT and R. HILLEBRAND

Dedicated to Prof. Dr. Dr. h. ¢. Dr. E. h. P. G6rLICH on the occasion of his 80th birthday,
also in the name of Prof. H. Bethge, Prof. V. Schmidt, and Prof. J. Heydenreich

In transmission electron microscopy of crystal lattice defects, the imaging of details smaller than
a few nanometres requires the consideration of the electron optical imaging process in addition to
the study of the interaction between electron beam and crystal. A method is described combining
the calculation of diffraction contrast amplitudes with the Fourier transformation formalism for
simulating bright- or dark-field diffraction contrasts and lattice fringe images of arbitrarily small
crystal defects. Simulated images are presented demonstrating the applicability of this method and
the significance of microscope aberrations for the interpretation of diffraction contrast and lattice
fringe images.

Die Erfassung von Kontrastdetails kleiner als einige Nanometer bei der Kristallgitter-Defektabbil-
dung im Transmissionselektronenmikroskop erfordert die gleichzeitige Untersuchung des elektro-
nenoptischen Prozesses und des Wechselwirkungsprozesses zwischen Elektronenstrahl und Kristall.
Es wird eine Methode beschrieben, die die Kombination der Berechnung der Beugungskontrast-
amplituden mit dem Formalismus der Fouriertransformation erméglicht, um Hellfeld- oder Dun-
kelfeld-Beugungskontrast und Netzebenenabbildung fiir beliebig klein Kristalldefekte zu simu-
licren. Es werden simulierte Abbildungen kleiner Kristalldefekte untersucht, um die Anwendbarkeit
der entwickelten Methode zu demonstrieren und die Bedeutung der elektronenoptischen Aberra-
tionen fiir die Interpretation von Beugungskontrast und Netzebenenabbildungen aufzuzeigen.

1. Introduction

In transmission electron microscopy the nature of small crystal lattice defects can
be analysed by the well-established method of diffraction contrast imaging. Addi-
tional supporting information can be obtained by lattice fringe and multi-beam
images.

If, however, the above techniques are applied to the analysis of high-resolution
image details smaller than about a nanometer, the imaging process itself becomes
more and more important, placing extra demands on the interpretation of the images
[1]. The microscope aberrations modify the black-white patterns of the diffraction
contrast and create a blurring of the lattice fringes distorted by a crystal defect.
So, for instance, out-of-focus diffraction contrast of small point defect clusters creates
black-white figures even under conditions where otherwise only black lobe contrast
might be expected [2]. On the other hand, the outward or inward bending of fringes
caused by dislocation loops or small precipitates no longer guarantees unequivocally
the interstitial or vacancy nature of the defects [3]. Nevertheless, comprehensive
analyses of the defect images and lattice fringe distortions including the microscope
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aberrations should yield information on the local defect structure. A systematic
study of all the relevant parameters (e.g. foil thickness ¢, defect depth position f,,
crystal orientation given here by the excitation error s, defocus A, spherical aber-
ration O, accelerating voltage U) and the investigation of the correlation between
the nature of the defect and the fringe distortion obtained is only possible if the
entire image (diffraction contrast or lattice fringes) of the small defect is considered.
Therefore, for example, the analysis of the phase profiles in [3] should be replaced
by simulated lattice fringe images to decide whether the fringes are terminated or
shifted, or whether the termination is annihilated over larger defect regions.

To enable this simulation of complete two-dimensional lattice fringe images, a
method is outlined to combipe the calculation of diffraction contrast amplitudes with
the calculation of the imaging process in the microscope [4]. This technique, of course,
also allows the computation of the defocus diffraction contrast of crystal defects.
The general formulation of these procedures extends the applicability and yields
quantitative results in addition to analytical approximation [3, 5 to 7].

2. Method

A number of approximations has been elaborated to describe mathematically diffrac-
tion by crystals containing defects. These methods can be divided mainly into two
groups, the direct space approaches and the calculations in reciprocal space. As shown
in [1], the reciprocal space methods use the concept of periodic continuation and
therefore yield good approximations solely for very small defects. Furthermore, it is
concluded that the direct space methods without column approximation are valid
irrespective of the degree of distortion, and that for any given level of resolution
and degree of distortion, the column approximation is valid for a sufficiently thin
crystal. Therefore, in the present work the interaction process is calculated using the
direct space method of column approximation, whereas the imaging process is described
numerically by Fourier analysis and synthesis suitably modified by a contrast trans-
fer function.

2.1 Calculation of diffraction amplitudes

The use of the column approximation enables the basic equations of the direct space
approach to be reduced to the standard set of differential scattering equations [8, 9]
d -

4, Do(R. 2) = 2mif, Dy(R, 2) -+ S Ap@yR, 2) . (1)

Here @, denotes the amplitudes for plane wave expansion of the wave function and
@D (R, t) describes the outgoing plane vacuum wave in k + g direction at the exit
crystal surface, i.e. for a reflection g, where % is the incident beam direction, cor-
rected for refraction (|k| ~ K, = 1/, wavelength A, r = (R, z), R column position).
The scattering matrix Ag, = 2mi(s;0q1 -+ Vy_3/2K,) describes the potential of the
perfect lattice by the structure amplitude V, and the orientation of the crystal by
the excitation errors s, (relative orientation between k and the Laue zone of g).
The dependence on the crystal defect is determined by the disturbance g, =
= (d/dz) (g - u(R, z)) which is the gradient of the displacement field component
parallel to the diffraction vector g.

The coordinates of (1) can be normalized to the extinction distances & = K,/|V,]
by introducing the dimensionless deviation parameters w, = &;s,, as commonly used
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in the two-beam situation. For describing the absorption, in a way similar to that
used for &, the normal and anomalous absorption parameters &, and &, respectively,
are introduced replacing V, by the optical potential. The normal absorption can be
handled by transformation ; in the present paper for the sake of simplicity it is included
in (1),

The numerical solution of the set of differential equations (1) is treated here by
a Runge-Kutta integration procedure or by a modified Thélén method and by using
interpolation procedures (see Section 2.4) as in [10], since the method of “generalized
cross sections” cannot be used for the non-straight defects considered here. A trans-
formation of the differential equation system for reducing its order is also not appli-
cable here because of the lack of the phase information necessary for lattice fringe
imaging (see, for example [11]).

The present authors prefer numerical methods instead of the analytical description
[3] using Katerbau’s matrices [5] since for the quantitative analysis of high-resolution
details the “mean defect parameters” are insufficient and have also to be specified
numerically for each column. But, for extending the present results to larger parameter
ranges, the analytical methods with their comprehensive physical treatment of the
contrast mechanisms are very helpful,

2.2 Construction of the displacement fields

For caleulating the displacement gradient f,, idealized defect configurations and
simplified elastic approximations are used, since these assumptions sufficiently
explain the general features of lattice fringe contrast. But for interpreting particular
experimental problems the calculation can be extended to arbitrarily complex
displacement fields; this will be considered in subsequent papers.

In the present work, the elastic displacement field u of a straight dislocation is
calculated by the well-known approximation for isotropic media where the displace-
ment field of grain boundaries is built up by pile-up configurations of straight dis-
locations. For considering the surface relaxation, which is of main importance in or
near the edge-on position of the dislocations, in a first approximation the rotation
and the change in the lattice spacing caused by the dislocations are included in the
B,-calculation (model of Bonse reported in [12]). This model will be called “lattice
rotation model” which is determined by the additional displacement gradient in the
direction of the diffraction vector (0 Bragg angle),

, 0 0
ﬂg:(&+036—”)g'“- (2)

A more complete treatment of surface relaxation for dislocations in exact end-on
position is employed based on the calculations of Tunstall et al. [13].

For the calculation of curved dislocations, it is normally sufficient to approximate
the dislocation line by suitably chosen polygonal dislocation configurations [10].
In this way the displacement field of a hexagonal dislocation loop is constructed by
the superposition of six angular dislocations [4, 10, 11, 14]. Subsequent papers will
deal with the problems of improved models for dislocations seen end-on, precipitates,
as well as the range of applications which are of practical interest.

The case of wedge-shaped crystals (see Fig. 7) has been computed by changing the
boundary conditions for the integration procedure corresponding to the slope of the
surfaces.

30*
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2.3 Investigation of the phases of diffracted waves

The interaction of the electrons with the crystal leads to the scattered outgoing wave
field

’lp(’)") — 'f/’e(R) e2nik1 (3)
at the exit crystal surface z = ¢ with
Pu(R) = X Dy(R, 1) >797 4)
g

The complex amplitude functions @, = @j° 4 @™ characterize the plane waves in
the k -+ g direction and therefore the reflection intensities in the back focal plane
of the objective lens. The amplitudes @, are functions of the position R if the crystal
is imperfect or bent; they can be represented by a modulus 7; and a phase ¢, yielding

DR, 1) = T,HR, t) elvsBD) | ‘ {5)
Formally the “plane” image wave function can be expressed by the convolution
p(R) = P(R)* y(R) (6)

with the point-spread function P(R) which is the Fourier transform of the transfer
function of the electron microscope [1]. The practical realization of (6) is deseribed in
Section 2.4. The image intensity is then

I(R) = [pi(R)|* . (7)

In imaging with aberration-free and in-focus conditions, called here “ideal imaging”,
the transfer function is equivalent to the aperture function, and therefore the con-
volution consists in a restriction of the summation in (4) to only those reflections
which pass through the objective aperture. Thus

Ipp = |Dgl2 = T, (8a)

Ipy = |@,* = 17, (8b)
and
ILF — |Z ¢0 eZm'gRlz —_ IZ Tg e2m'gR+irpgl2
g g

=X T;+ DP) TyThcos [2m(g — R) R + ¢ — 1) (8c)
g gh

describe the ideal image contrast of bright-field and dark-field diffraction and lattice
fringes, respectively. This shows that here the phases g, with their differences 8p =
= @y — @p are of interest only in lattice iringe contrast.

1f, however, the aberration of the imaging process cannot be neglected, as occurs
at higher resolution (see the following numerical treatment), the phases g, play an
important role even in diffraction contrast imaging. In first-order approximations
(see Appendix A and [7]), the diffraction intensities can be described by

IS r = [1 + g(R)] Igp,vi(R + O(R)) , (9a)
whereas for lattice fringe imaging one obtains
¥ =y1m+y ; TyTh cos [2n(g — h) R 4 @5 — ¢n + x(9) — x(R)].
9 g+h
(9b)

Amplification factor ¢(R) and image shift 6(R) for diffraction contrast as well as the
direct additional phase shift of lattice fringes caused by the contrast transfer function
(CTF) in the form of y(g) are discussed in Appendix A.



Calculated Defocus Diffraction Contrast and Lattice Fringe Imaging 469

Two-beam diffraction at a thin perfect crystal where absorption is neglected yields

T, —yT= 1%, T, :l/lilwzsin (1:1/71 ¥ w)
t
cot (¢ — g) = — iﬁwwztan (?g V1+ wz) (10)

(for the derivation of (10) and more general expressions including absorption, see
Appendix B). 7, and T, describe the well-known Bragg extinction contours and the

thickness fringes at w = 0 and ¢/£, = m/}/1 + w?, respectively. They also characterize
the visibility of lattice fringes according to (9b), resulting in a minimal visibility for
t — m&,/2)1 + w? and a maximal visibility for sin (m¢ y/(l + w?)/&,) = [/1 + w¥2).
The more important phase differences of (10) characterize directly the displacement
of the fringes due to w and ¢. A sign reversal of cot (g, — ¢,) causes an increase or
decrease of 8¢ by 7. This increase or decrease describes a strong bending or shifting of
the lattice fringes which should occur (cf. (10)) at Bragg contours or thickness fringes
(showing results similar to those in [15]). At ¢ = 0 the phase difference is 8¢ = =/2
and, besides in places of discontinuous 8p, the approximation 3¢ = mst holds.

For non-perfect crystals, to first-order approximation, w can be replaced by
w + £,8, in (10), or as Appendix B also shows, the phase difference 3¢ is replaced by

w wt
8 = 0 = o = 2lfult) — (0] — - tan (T + ). (1)
Y1+ w? &
These considerations explain the effect of crystal defects on lattice fringe contrast
in first-order approximation, extrapolating the behaviour of perfect specimens. A
more quantitative analysis requires a more detailed knowledge of modulus and phases
implying a numerical calculation.

As to the mechanism of lattice fringe distortions Fig. 1 shows numerically cal-
culated phase differences 8p = ¢, — ¢, using (1) for the two-beam situation and the
displacement field of a screw dislocation inclined at 30° to the foil surface. The coor-
dinates B = (z, y) of the phase diagram indicate the position of the columns of inte-
gration where the projection of the screw coincides with the y-axis. Thus, x describes
the distance from the dislocation line, and y can be interpreted in terms of the depth
position of the dislocation.

The behaviour of 3¢ predicted approximately can be confirmed by analytical con-
siderations. Furthermore, for increasing the distances the displacement field acts
as a discontinuity which explains the phase shift of 4z from x = — oo to co. Chang-
ing the depth position y implies the reversal of the sign of the phase shift, so
that a transition region exists (see dashed lines) characterizing a 2z-discontinuity.
In the neighbourhood of this phase gap, in the corresponding lattice fringe patterns,
a terminated fringe occurs because of the ambiguity of the phase relations. For the
practical application of the real microscopic imaging process it becomes obvious that
the approximately known phases and modules can describe only qualitatively the
properties of image contrast,

2.4 Calculation of the imaging process

The imaging process is fully described by the convolution given in (6). In practice,
however, the convolution theorem is employed. Thus for the given diffraction angles
{(small-angle approximation, linearity) the imaging procedure may be described by
a sequence of Fourier transforms (7, F-1) [11]. As to the objective lens, the wave
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Fig. 1. Set of diagrams showing phase differences 8¢ = ¢, — ¢, as a function of column position
R = {x,y) for an inclined screw dislocation. Parameters: g = (111), b = %[011], e = [110],
t = &4/4 (&5 of Ge; the dashed curves indicate the phase ambiguity of 2z characterizing a terminat-
ed fringe at y = 0.06)

function in the back focal plane, i.e. the diffraction pattern, is given by
pa(@) = Fp(R)] . ' (12)

The frequency spectrum gq(0) consists of sharp reflections at @ = g, for perfect
crystals. It shows a fine structure surrounding all reflections g, due to the local
variation in @,(R) due to the lattice defects. Under the actual experimental conditions
wale) is multiplied by a binary aperture function A4(g). The electron microscope
aberrations are considered in the contrast transfer function (CTF) [11] with special
reference to the point-spread properties P(R) of the microscope CTF(0) = F[P(R)]
in reciprocal space

va(@) = yale) A(e) e~ =@ ;. y(g) = wi[Ag® — C;2%42], (13)
where # yepresents the partial coherence by an envelope function, which describes
the resulting spread of defocus. The inverse Fourier transform of the modified spatial
amplitudes g (o) provides the wave function in the image plane

w(R) = T [pa(e)] . (14)

The intensity distribution of the final image, which should be matched by the siniu-
lation procedure, is then given by (7). For distinguishing the blurring influence of
microscopic aberrations from the direct specimen signal, perfect contrast transfer
(C, = 0, A = 0) is assumed in some tables of calculated patterns. The application
of (12) to (14) is realized numerically using a fast Fourier transformation which assumes
a knowledge of the complex amplitudes @,(R;,) at the exit crystal surface for all
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2ne rows (I = 1, 2, ..., 2%) and 2% columns (m = 1, 2, ..., 2%) of image pixels with
coordinates Ry, = (x, + I3z, y, + m dy). For saving computation time, however,
the numerical calculation of @,(R;,) by integrating the differential equation system
(1) is treated only for about 20%, of the pixels; their completion is carried out by
interpolation. The integrated pixels act as pivot points building up the complete
image by two-dimensional linear interpolation of the image intensity. Thereby, the
intensity of each interpolated pixel is calculated by evaluating two different groups
of pivot points. It is replaced by the mean value, if the interpolated values are compar-
able. The error limits allowable are fixed by test calculations and determine the
interpolation accuracy. As the integration of (1) is the stage that is most time-con-
suniing the interpolation procedure is extended to the interpolation of the complex
amplitudes.

While the independent interpolation of real and imaginary parts of @;, on the one
hand, describes the phase behaviour more accurately, the interpolation of modulus
and phases, on the other hand, results in smoother diffraction contrast images (see
Appendix C). In the former case, the modulus shows an irregular behaviour at pixels
with strong phase oscillations. In the latter case, i.e. if both modulus and phases are
interpolated, sudden phase changes can be smoothed out, and due to the periodicity
(2n) of the phases, irregular phase discontinuities can be additionally generated.

A physically consistent interpolation procedure for calculating both the diffraction
contrast and the lattice fringe imaging must reproduce the intensities as well as the
phases without irregularities. Therefore, in the present paper both the interpolation
procedures are combined in such way that the phases are determined by independently
interpolating the real and imaginary parts. The modulus, however, is corrected
using the interpolation formulae of the intensities. Thereby, the error criterion of
intensity interpolation also controls the interpolation of the modulus. The extensively
discussed interpolation of complex amplitudes is summaiized considering the cal-
culated diffraction contrast and lattice fringe images of a dislocation seen end-on in
An (lattice rotation model},

In Fig. 2 the interpolation of modulus/phase functions (Fig. 2a to ¢) is compared
with that of real/imaginary parts with corrected modulus (Fig. 2d to f). The ideal
bright-field images do not show significant differences, which proves that the inde-
pendent interpolation of real and imaginary parts corrected by the modulus yields
the same results as the intensity interpolation for pure diffraction contrast. Further-
more, the phase interpolation yields additional phase discontinuities creating virtual
structures in the defocused bright-field and lattice fringe imaging. These virtual
structures disappear (Fig. 2e and f) using the interpolation of real and imaginary parts
corrected by the modulus (see Appendix C). If the defocused images (Fig. 2b, e)
are compared with the ideal bright-field contrast (Fig. 2a, d), the present inter-
polation procedure seems satisfactory, since the rough contrast features of the bright-
tield are reproduced only in Fig. 2e despite the microscope aberrations. The absence
of any fringe distortions in Fig. 2f, which has been discussed in connection with
Fig. 4, is a direct result of the displacement field approximation.

Besides the problem of interpolating complex amplitudes, the question of the order
of interpolation and the selection of pivot points have to be discusszd. Using linear
interpolation, the loss of accuracy in comparison with higher-order algorithms can
be compensated by applying suitable interpolation error limits, because an accuracy
within one grey level is sufficient for the final image. Furthermore, the procedure of
bilinear interpolation calculating the arithmetic mean of two-point or three-point
pivot groups will decrease the checker-board effect in a similar way to that of reduc-
ing a four-point interpolation to a three-point one [16].



472 K. ScueerscaMipT and R. HILLEBRAND

WO beete ] _mmmmnmmmn
i OTETT _;Hlummummummmmmﬂ

G ] nﬁnmmp- e

ttemmssssnsn s ennnne ! coni et ; -
LT P T BT T T "1' HEHIHAINETE R Hllglllllllﬂﬂllmm". 8
T T O T T |ﬂ' 'lummnlmmnmmnlmlilllhllmunlil!!“l“"'“U
rlmmnmnmm«unﬁw' Lt T T T T T T SR
'"!’hll""llll“lm"iﬂ.,u'mh BT T T e e
gt G i'illllllllll!lllill T H S G T T TR F T T
'*Hmhlliimmmmmﬂ u‘ll ot SRR b M i
e mmm ""'"“““l“ll!lllll'llll!llll“lllIlll!Illlllllll“l“!lﬂlllllllllllm!l
ldﬂmummumnmlmu' lmummmmm1uml|ulmlmmmmmmmmmmunmna

) and f) lattice fringe images. Parameters:

AHMH IR ﬂm T EETEE m.m;mnmumuﬂlmlllmmmmuummqlmlll
T T T T T L O Ii

i“l il ;--

LTS T T T L T TR R L]
i 1mmmmmimumuimuu HHit

’

) to ¢), with modulus-corrected real/imaginary part interpolation, d) to f), for a dislo-

= |001], ¢ = 314y, w =0

b = [100], e

(200),

cation seen end-on, a) and d) ideal and b) and e) aberrated bright-field contrast as well as ¢

Fig. 2. Comparison of modulus/phase interpolation, a

y:



Calculated Defocus Diffraction Contrast and Lattice Fringe Imaging 473

3. Results

The image simulation procedure described in Section 2 is now applied to study the
mechanism of crystal defect contrast. The investigation is concerned with the in-
fluence of microscope aberrations on diffraction contrast (Section 3.1) as well as
on lattice fringe (Section 3.2) imaging. Thereby various crystal defects are presupposed.
for testing the applicability of the present simulation method considering both proces-
ses of interaction and imaging.

3.1 Defocus diffraction contrast

The influence of the electron microscope imaging process on the bright-field contrast
of prismatic loops in Au specimens is shown in the series of Fig. 3. The hexagonal
loops (n = [1117), which are built up by six angular dislocations (b = 4(111)) are
imaged using the [110] beam direction. In the upper left the pure diffraction contrast
pattern (C, = 0, A = 0) is shown for a systematic comparison. In order to illustrate
that microscope aberrations may increasingly control the image, the loop diameter d
(and the corresponding image size) was varied, from left to right, from 12 through 6
to 3nm approaching the resolution limit of the microscope. The actual Scherzer
contrast transfer function (U = 100kV, €, = 5.1 nm, A =0 and 150 nm) causes
characteristie fringes, similar to Fresnel {ringes to appear along lines of strong contrast
changes. This effect becomes most dominant for d = 3 nm, where a rapidly oscil-
lating part of the contrast transfer function contributes to the final image.

Fig. 4 displays the bright-field contrast of a straight part of a grain boundary in
gold (beam direction e = [001]). The model of the grain boundary (direction [130])
consists of dislocations seen end-on in pile-up configuration with Burgers vectors of
b, ; =+ [100] and by 4 = -~ [110]. This Au foil of 13.5 nm thickness is tilted in such
a way that the diffraction vector g = (020) is exactly excited (w = 0). The diffrac-
tion contrast (/pipy is the intensity of the bright-field amplitude) is imaged in the upper
left of the figure. In the lower left the corresponding diffraction pattern is shown
(only the direct (009) reflection has significant intensity) for two different apertures
(6 = 0.01, 0.02 rad). Both these different cut-off diamecters of the Scherzer contrast
transfer function (V = 100 kV, C, = 1.4 nm, 4 = 59 and 90 nm) in Fourier space
illustrate the significant influence of its strongly oscillating part of higher frequencies
whereby the defocus spread is neglected for this series. The number, the contrast, and
the spacing of the “Fresnel fringes” characterize the out-of-focus diffraction contrast.
Relative phase rotations caused by aberrations are lowest for 2 = 90 nm and «; =
= 0.01 rad, which results in only weak distortions of the image. The contrast features
of the bright-field image of the grain boundary (¥ig. 4} can be described to a good
approximation by applying the lattice rotation model of the dislocations seen end-on.
Un the other hand, this displacement field model is not sufficient for generating
terminated fringes, which are to be expected for lattice fringe contrast (cf. Fig. 2t).
The latter results from insufticient surface relaxation caused by the lattice rotation
model,

3.2 Latlice fringes

The application of the technique of calculating lattice fringe contrast near crystal
defects is illustrated in Fig. 5. For a Ge specimen of 11 nm thickness (£,/4) bright-field
(BF) and dark-field (DF) diffraction contrasts are computed for a screw dislocation
having an inclination of 30° (b = 4 [011]). The assumed incident beam direction is
e = [I110] and the diffraction vector is g = (111). For the computation of the lattice

fringe contrast (LF) the interference of the bright-field and dark-field amplitudes
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- (620), b, = by

Tqiger are the ideal image 4 = C; =0

0]. Parameters: g

0,1 = 3/4&, (£, of Au); U = 100kV, Oy = 1.4 mm (Jp i,

and the calculated diffraction pattorn, respectively)

1110, e = [001], w

51100], b, = b, =

H

a

Fig. 4. Influence of defocus A and aperture « on the bright-field contrast of a grain boundary along [13
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was carried out according to (4). The marked sub-units of the BF and DF were treated
by applying the above interpolation procedure. The inset of the LF image shows the
corresponding diffraction pattern. Confirming the g .b criterion (g-b = 1) an
additional, terminated lattice fringe appears. If, furthermore, the experimental contrast
transfer function is taken into account (U = 100kV, €, = 1.4 mm, 4 = 75 nm),
the lattice fringe contrast is modified. In the case of this screw dislocation, for instance,
it is not possible to localize the terminated fringe, because the contrast is blurred by
microscope aberrations. Examples of varying selected specimen parameters of the
screw dislocation (cf. Fig. 5) in Ge are shown in Fig. 6. In the left part of Fig. 6 the
inclination angle of the dislocation, reaches 64°, whereas the specimen, thickness ¢ =
== &,/4 = 11 nm remains constant. Along the trace of the crystal defect, which turns
from top to bottom in the middle of the image (see dashed line), there are two signifi-
cant distortions of the lattice fringe contrast in form of bendings and terminating
fringes. An increase of inclination of the dislocation line up to 80° or 90° does not
result in disturbed lattice fringes in the present calculations, because the relaxation
is not, sufficiently described by a lattice rotation model as discussed above (Fig. 4). In
the centre and in the right-hand part of Fig. 6 the specimen thickness is varied from
t = 0.5&, to t = 0.75&, for the screw dislocation having an inclination of 30° (compare
Fig. 5). While the interference pattern for ¢ = £,/2 does not show amy significant
effect, for ¢ = 0.75&, the lattice fringes on either side of the dislocation trace are
relatively shifted. The effect of darkening the right-hand side of the screw dislocation
has increased.

Fig. 7 shows the interaction of the lattice fringe contrast with thickness fringes
of a wedge-shaped specimen (e.g. one edge of a small Au tetrahedron of about 70°
wedge angle). The direction of the incident beam is [110] and the diffraction vector is
g — (111). The orientation of both the crystal edge and the thickness fringes is [110]
{see upper left of Fig. 7). In the image field the BF-DF interference pattern is ar-
ranged in such a way that all essential numerical effects become obvious. The cal-
culation of the ideal lattice fringe image (A1 = 0, C, = 0) closely confirms the analyt-
ical results of (9). The lattice fringe displacement is controlled by the increasing
specimen thickness, whereby the periodic lattice fringe shifting is caused by the
phase discontinuties of the thickness extinction contours. The influence of the aber-
rations, which cannot be investigated readily by analytical methods is considered
here assuming two types of contrast transfer. In the upper row the CTF is approxi-
mated by a simple binary aperture function. The aperture angle decreases from left
to right from 0.026 rad (ideal image, because the corresponding point spread function
is a d-function) through 0.017 to 0.014 rad. Overlapping sections (end effect) occur
as a result of this aggravating truncation in Fourier space of the boundary of the
final image. For an aperture of & = 0.014 rad the diffracted beam (DF) is excluded
from the image formation, and the lattice fringe contrast vanishes. At the bottom of
Fig. 7 for the same decreasing aperture values an actual Scherzer contrast transfer
function (U = 100 kV, ¢, = 1.4 mm, A = 51 nm) is applied. According to the strongly
oscillating CTF in the Fourier space there is a drastic overlapping of periodically
succeeding image regions. For decreasing aperture (o = 0.014) the CTF approaches
unity, and the truncation supersedes the convolution effect of the corresponding, far-
reaching, point-spread function of the Scherzer terms.

In order to study the aberrational effect in lattice fringe imaging a through-focus
series of a two-beam image for a hexagonal dislocation loop is calculated in Fig. 8.
For the given specimen orientation, the incident beam direction is [110] and the
diffraction vector is g = (111). The prismatic crystal defect itself may be characterized
by the loop normal n = [111] and the loop diameter of d = 0.15&,, the foil thickness
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Fig. 8. Through-focus series (4) of lattice fringes of a hexagonal dislocation loop. Parameters:
g = (111), b = L[111], e = [110}, n = [111], ¢, = 0.625&,, t = 1.125&, (£, of Au), w = 0; U =

= 100 kV, & = 0.017 rad, 05 = 1.4 mm. Ideal image Cy = 4 = 0 (for comparison)
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is t = 1.125&, and the depth position of the loop is ¢, = 0.625&,. On the left hand-side
of Fig. 8 the ideal interference pattern of bright- and dark-field amplitudes (C, =
= 4 = 0) is shown. For the through-focus series the electron microscope imaging
parameters are U = 100kV, ¢, = 14 mm, A= 0,51, 86 nm, and &« = 0.017 rad.
The influence of the contrast transfer function emphasizes the residual diffraction
contrast of the loop. Characteristic distortions of the lattice fringes remain detectable
also for realistic imaging conditions. The positions of the lattice fringe distortions,
e.g. bendings and terminated fringes, are marked by dark, blurred contrast details
for all defocus values. For A = 0 and, especially, for a defocus of A4 = 51 nm Fresnel
fringes occur, whereas for the Scherzer focus (4 = 86 nm) the relative phase rotations
are minimal over a wide band of spatial frequencies. In fact, the microscope aber-
rations seem to cause a slight brightening of the surrounding of the defect.

4. Conclusions

Extending the conventional diffraction contrast technique, which as a routine method
is used to investigate extended crystal defects, the imaging of small lattice distortions
(transition from diffraction contrast to HREM) requires the consideration of the
electron microscope aberrations. The computer simulation of defocus diffraction
contrast as well as of lattice fringe images of crystal defects has been carried out to
demonstrate the importance of contrast transfer for the interpretation of exper-
imental images. For the efficient calculation of the image intensities an appropriate
technique of interpolating the complex diffraction amplitudes has been derived. The
two stages of the simulation procedure (specimen interaction by diffraction theory,
electron-optical imaging process by Fourier formalism) provide interpretable results
to be expected for both the defocus diffraction contrast and the lattice fringe pat-
terns. Lattice fringe distortions (including shifting, bending, and termination) are
shown to be controlled by phase differences between bright-field and dark-field
amplitudes. The examples selected of simulated defect images also allow a critical
discussion of numerical problems, e.g. of aliasing and truncation of the discrete Fourier
transform and convolution. The computed two-dimensional patterns display addi-
tional contrast features in diffraction contrast (e.g. Fresnel fringes) as well as a
blurring effect and further fringe modifications, for lattice fringe images caused by
the microscope contrast transfer.
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Appendix
A. Approximation of conitrast transfer

(i) Equation (6) is equivalent to (12) to (14) for the CTF of (13) applied (convolution
theorem). For perfect crystals of constant thickness ¢ the amplitudes @y (R, 1) are
constant and (4), (12) yield the discrete Fourier spectrum

pal@) = g D,0(9 — @) - (A1)

Neglecting E(@) and identifying g = (000) with the optical axis for the sake of
simplicity, (13), 14) yield

WiR) = 3 B,A(g) om0k, (A2)
4

This is equivalent to (8) when applying (5) and using A(g) equal to 1 or 0 inside and
outside the aperture, respectively.

(ii) For nearly perfect crystals with weakly oscillating @ (R, ¢} the distributions
in (Al) are spread, but p4(0) is different from zero only in small distances ¢, from the
reflections ¢ = g + &,. Thus (A2) can be approximated by

W(R) = T [palg + 2,) A(g + &;) e 1010 g2ilgtep R g, (A3)
g

which enables us to extend the approximation of y{(g) given in [7] to complete CTF

and arbitrary reflections. While [7] is only applicable to g = 0 (oralso to g =~ 1/27/0?3
when O is included) the approximation up to the second order in &

e gt ~ e~ HD(1 — 7d[A(2ge, + &y) — CA3(29%ge, + g2 + 2(ge,)?)]}

(Ad)
holds for the general case. With the help of VV operating on R (A3), (A4) yield

pilR) = X A(g) e?ﬂfﬂ"—fﬂw{l + i‘l [AV? - 4dmigV) — O (g*V* + 2gV)* —
g

7T

+ 4m’g2<gv>)1}¢g- (A5)

(iii) In analogy to [7] (Ab) is specified to diffraction contrast assuming that A(g)
surrounds only reflection g, replacing @, by (5) and comparing (A5) with the first-
order approximation of (9a), i.e. I{™ = I, + ¢(R) I, + VI, 6(R). Denoting further
the projection of nabla in the direction of reflection g by V, = (¢/9)g/gV) one obtains

A C g2 9
aR) = — 5 Vg + =5 (Vg + Vi),
: (A6)
A O }’4 2
S(R) = — 5 (2mg + Vo) + 4. " (279 + Vg + 2,9) .

For g = 0 (A6) confirms [7]. Furthermore, K(g) can be included by a damping factor
and a tilt of the optical axis can be considered by a shift of g.
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B. Approximation of diffraction contrast
(i) Equation (1) for the two-beam case (0, g) can be written

Dy = mioy®@,, Py = 2mi(s, + By) @y + wic,D, , (A7)
whereby ¢, = 1/&, 4 i/&,. Using (5) one obtains

. b4 T T T T T
g’ = 27(s, -+ B;) + — cosd (—9——9)—}——,31118 (ﬁo—{- J),
P g ﬁ!l 50 P Tg TO ; ¢ i v TO
. ) (A8)
To,y=—aTyo (— sin 8¢ 1= - cos ng) ,
Eq Sg
which in first-order approximation immediately results in (11).
(ii) The solution of (A7) for perfect crystals of thickness ¢ is given by
D)= (cos ot — ZS?‘] sin mﬁ) et D, = %T_—O sin 7ot et (A9)
with o =y 4+ i1 = ;/0(2) + S; Using (5) one obtains
I, = éﬁ [(y2 4 72 4 s2) cosh 2wt -+ (y* - 72 — 85) cos 2yt —
— $yv sinh 271t — s7 sin 2myp(] ,
1£-2 ‘9
I, = 1&2 48 (cosh 2mtt — cos 2mpt) , (A10)

4 2 oy g
_(7/€; — yI&) sin 2mypt — (p/E, 4 7/&,) sinh 21t — (s]&,) (cosh 27t — cos 2myt)
T (y[&s 4 7€) sin 2mpt 4+ (7)€, — y[&;) sinh 2mvzt - (s[E,) (cosh 2mTt — cos 2myt)”

Neglecting absorption 1/&, = 0, (10) is directly obtained. A further well-established
approximation is given by y = (1/£,) V1 + w? and 7 = £,/&, )1 + w?.

cot 8

C. Interpolation

The formulas

Q)IP(X) _ [Tl + (Tz . Tl)i — xl:l eli[(pﬁ(wz—@) @—x,] (All)
s —

€Ty

and
x — x

Dpi(x) = Dy + (D — Dy) (A12)

Ly — Xy

characterize the independent interpolation in modulus and phase (MP), or real and
imaginary parts (RI) of a complex function @(x) given at the pivot points @; =
= @(z;) = T, e (without loss of generality one-dimensional arguments are used;
the bilinear interpolation as well as the questions of the order of interpolation and
the selection of pivot points are directly related to properties of the discrete convolution
and will be outlined otherwise). While the interpolated phase of (Al11) levels the
discontinuities, the latter are reproduced by

Ty sin gy(@, — ) + T sin gy — 2y) (A13)
T, cos @y(xy — x) + T, cos py(z — ) ’

@r = arctan

31 physica (a) 91/2
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which is the resulting phase of (A12). Comparing the resulting interpolated moduli

one obtains

Xy — 2) (x — =)
(g — #7)

showing the maximal difference at discontinuity ¢, — ¢, = 4= of phases.

Tip — The = 27,7, [cos (g — @) — 1]

(A14)
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