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Empirical bond-order potential for semiconductors

Detlef Conrad* and Kurt Scheerschmidt
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~Received 2 February 1998; revised manuscript received 23 March 1998!

An empirical bond-order potential for semiconductors is developed. The total energy is expressed as the sum
of contributions of individual bonds weighted by a bond-order term. For the bond-order term the tight binding
second moment approximation is used. The application to silicon in its diamond structure gives results com-
parable to those obtained with the Tersoff potential. A parameter set for GaAs is proposed yielding elastic
constants and surface and defect properties in good agreement with experimental and quantum mechanical
results. Because of its generality and small number of fitting parameters, the potential is easy to apply to a wide
range of semiconducting materials.@S0163-1829~98!01031-5#
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I. INTRODUCTION

Empirical potentials in molecular dynamics~MD! or mo-
lecular statics simulations have become an increasingly p
erful means of understanding and predicting material pr
erties. In spite of the recent dramatic growth of compu
capacities and the usage of first-principles calculations,
pirical potentials provide most valuable insights into syste
beyond the scope of quantum mechanical methods. This
cludes the study of grain boundaries, extended defects, o
dynamics of crystal growth. In addition, hybrid methods u
empirical potentials for regions that are expected to rem
in configurations to which these potentials are fitted.

For semiconductors, the most successful approache
develop empirical potentials are those of Stillinger a
Weber1 and Tersoff.2 Originally, the former potential was
proposed for silicon and has been fitted to a number
chemical elements, including the group IV semiconduct
and their binaries and III-V compounds.3–10 One of the dis-
advantages in applying this approach to III-V compounds
that the homonuclear interactions cannot be fitted so strai
forwardly as it is possible for the group IV elements a
their binaries. Thus, for a great number of potentials th
interactions are not fitted or they are absent. This redu
their applicability considerably.

The approach of Tersoff is essentially different with t
atomic interactions depending on the environment of bo
or atoms. Following Abell,11 Tersoff expressed the total en
ergy V of a given structure as

V5(
iÞ j

Ae2lr i j 2Bbi j e
2mr i j , ~1!

wherer i j is the distance between atomsi and j ; A, B, l,
andm are parameters; andbi j is the bond-order term, which
accounts for an effective coordination. As it is the case
the Stillinger-Weber~SW! potential, the Tersoff potentia
was fitted to the group IV semiconductors and to a numbe
III-V compounds.12–15 No preference of one of these a
proaches over another seems to be justifieda priori. The
Tersoff potential, however, seems to be more successf
other chemical elements are included. Brenner16 has given a
parametrization for C-H interactions yielding a good over
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description for diamond, fullerenes, and hydrocarbo
Murty and Atwater17 proposed a parameter set for Si-H i
teractions agreeing well with experiments for hydrogen
sorbed on Si~001! surfaces and small Si-H molecules.

The main difficulty in fitting empirical parameters to sy
tems containing more than one atomic species is that
does not know on which atomic species the bond-order t
should depend. For Si-C and Si-Ge interactions, it is
sumed to depend on the central atomi and it is weighted by
a factor that distinguishes homonuclear and heteronuc
interactions. In the potentials of Smith13 and Ashuet al.14 for
GaAs and InxGa12xAs, the bond-order term depends sole
on the central atom. In the Si-H and C-H potentials the
gular terms depend complexly on two or three atoms
volved. Beardmore and Smith18 have combined these poten
tials to model Si-H-C interactions. Since there is not on
one way to combine these interactions, different combinat
rules imply different results. In the approach of Albeet al.15

for BN, the parameters of the bond-order term depend on
atomic speciesi and j . Khor and Das Sarma19 have proposed
a universal potential similar to the potential and applied it
several III-V compounds. Although the homonuclear intera
tions are fitted to some physical properties, Khor and D
Sarma omitted the angular dependence of these interact
In addition, the bond-order term is not smooth if the coor
nation changes, making it impossible to be used in MD sim
lations. The aim of this paper is to show that an empiri
bond-order term derived from the second moment appro
mation of the tight binding model can be used to establis
general empirical potential at the level of the Terso
potential.

II. SECOND MOMENT APPROXIMATION

Several authors20–24have proposed to use the moments
the electronic density as one way to derive physically mo
vated semiempirical potentials for different materials rang
from silicon to metals and transition metals. Carlsson22 has
pointed out that both metallic and covalent systems may
described on this basis. It is now well established that
empirical potentials of Finnis and Sinclair,21 Daw and
Baskes,25 and Tersoff can, in some respect, be regarded
certain approximations of such a moment expansion. T
4538 © 1998 The American Physical Society
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usefulness of the SW potential lies in the fact that in
covalent limit the bond energies are independent of e
other and hence additive. On the other hand, the succe
Tersoff’s approach is based on the fact that for a wide ra
of materials the ratio of the bond energy to an effective
ordination number is proportional to the equilibrium bo
length.

In this paper we use the tight binding second mom
approximation to write the bond order explicitly in terms
elements of the tight binding Hamiltonian matrix. Usin
physically motivated matrix elements, the remaining tw
body parameters are fitted to elastic constants, equilibr
bond lengths, and cohesive energies. We show that, de
the relatively small number of adjustable parameters,
formalism leads to a potential comparable to the Tersoff
tential for Si. A second parameter set is given for GaAs
demonstrate the applicability to III-V compounds.

The total binding energy can be written as~see, e.g., Ref.
26!

V5(
i , j

Vi j
rep1Vi j

bond. ~2!

Here the first term is the ionic repulsion. The second term
the attractive bond energy. According to Pettifor,27 the latter
term may be written as

Vi j
bond52(

a,b
Hia, j bQ j b,ia . ~3!

H is the bond integral matrix of Slater and Koster28 andQ is
the corresponding bond-order matrix. Here we restrict o
selves to systems withs and p electrons, only, so that th
diagonal elements ofH are the on-site energiesEs and Ep
~Table I!; the nondiagonal elements are the hopping integ
sss, sps, pss, pps, andppp. Under certain conditions
for the matrix elements~see, e.g., Ref. 27! and the neglect of
p bonding, Eq.~3! becomes

Vi j
bond522hs i j Q is, j s , ~4!

with hs i j 52sss i j 1pps i j . Using the abbreviationsEsp
5Ep2Es , ps5pps/usssu, and Es5(Es1psEp)/(1
1ps), we write the first term of the expansion followin
Alinaghianet al.:29

Q is, j s}S 11
1

hs i j
2
~D21S2!D 21/2

, ~5!

with

TABLE I. On-site energies in eV used for the present potent

Element Es Ep

Si 0.0 8.295
Ga 22.657 3.669
As 28.343 1.041
e
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D25
1

2~11ps i i !
S 1

4
DE21

ps i i

11ps i i
Espi

2D
1

1

2~11ps j j !
S 1

4
DE21

ps j j

11ps j j
Esp j

2D , ~6!

DE5Es i2Es j , ~7!

and

S25
1

2 (
kÞ i , j

hs ik
2gs~u j ik !1

1

2 (
lÞ i , j

hs j l
2gs~u i j l !. ~8!

The angular terms depend on the hopping elements~Table II!

gs~u j ik !5a1b cos~u j ik !1c cos~2u j ik !, ~9!

a512b2c, ~10!

b5
4c

ps ik
, ~11!

c5
ps ik

2

2~11ps ik!2
. ~12!

In Eq. ~5! the proportionality factor depends on band fillin
Here we assume it to be constant. Note that some ma
elements depend on only one atomic species, whereas o
elements depend on both species of a specific bond.
advantage of using Eq.~5! as the bond-order term of a
empirical potential is therefore evident. First, it is cle
which atomic species the angular terms depend on. Sec
the parameters are the elements of the bond integral ma
thus it is not necessary to fit angular terms, which is proba
the most difficult part of a fitting procedure. As it wa
pointed out earlier, numerically the angular part of the T
soff potential for Si is almost identical to expression~9! for
appropriate matrix elements.29

III. FIT OF THE POTENTIAL

In order to use expression~5! as the bond-order term in a
empirical potential, we rewrite the potential energy as

V5(
i , j

f c~r i j !~Ae2lr i j 2Bbi j e
2mr i j !, ~13!

with

bi j 52hs i j Q is, j s ~14!

and f c being a cutoff function. In contrast to the Terso
potential, the sum in Eq.~13! is over bonds rather than a
oms. Since the environment of both atomsi and j is taken

l. TABLE II. Hopping elements in eV used for the present pote
tial. Note that for Ga-As, Ga-Ga, and As-As the parameters are
same andppp50 for all interactions.

Element sss sps pps

Si 21.820 1.960 3.060
Ga, As 21.613 2.204 3.028
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into account, the bond order shows the symmetrybi j 5bji .
Since the elements of the Hamiltonian matrix depend on
interatomic distance, the bond order is also a function of
distance. We assume that this radial dependence ca
transferred into the factorBe2mr i j so that only the equilib-
rium values of the matrix elements have to be considere
Eq. ~14!.

The parameters of the potential energy function~13! can
be divided into three groups. The parameters of the cu
function, for which we assume the same functional form a
cutoff distance as in the Tersoff potential, are fixed betwe
the first and the next neighbor shell of atoms. The sec
group consists of parametersEs , Ep , sss, sps, spp,
and ppp entering the angular term. These parameters
taken from tight binding models of the system under cons
eration and they are no longer free. The third group, wh
we call the two-body parameters since they do not appea
the angular term, areA, B, l, andm. Only these param-
eters are used in the fitting procedure.

First, the potential~13! is tested for silicon by fitting the
two-body parameters~Table III!. Because of its technologi
cal importance, silicon is one of the most extensively stud
systems with an enormous data base of bulk, surface,
defect properties available. Therefore, silicon has alw
been a test system for first-principles methods, tight bind
calculations, and empirical potentials.

For the matrix elements and the on-site energies we
the tight binding parameters of Goodwinet al.30 As men-
tioned above,p bonding is neglected by settingppp equal
to zero. The functional form of Eq.~13! is flexible enough to
be fitted, simultaneously, to the cohesive energy, equilibri
bond length, and the elastic constants of Si in the diam
structure. In addition, the potential is tested for some w
known surface and defect properties. We obtain a dim
length of 2.37 Å and an energy gain of 1.62 eV per dimer
the Si(001)-231 reconstruction. The elastic constants a
defect energies are summarized in Tables IV and V. T
potential was also tested for the high-densityb-tin, simple
cubic, bcc, and fcc Si structures. Our results given in Ta

TABLE III. Two-body parameters.

Elements A (eV) B (eV) l (Å 21) m (Å 21)

Si-Si 1845.8640 75.03 2.60 1.66
Ga-As 1310.8480 42.5446 2.58 1.54
Ga-Ga 795.540 34 87.245 595 2.26 1.71
As-As 2002.1275 7.977 348 7 3.05 1.01

TABLE IV. Elastic constants of Si and GaAs, present potent
and experimental data. All values are given in Mbar. Experime
data are from Refs. 44 and 45.

Structure Source C11 C12 C44

Si present work 1.7 0.62 0.61
Si experiment 1.67 0.65 0.80
GaAs present work 1.06 0.39 0.36
GaAs experiment 1.18 0.54 0.59
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VI are in good agreement with the results of the Ters
potential and in reasonable agreement withab initio
calculations.31,32

In order to establish a parameter set for GaAs, we use
on-site energies and hopping integrals of Goringeet al.33

Since our approach does not distinguish the Ga-As bo
from As-Ga ones, the same value forsps is used~which is,
in fact, the geometric mean of the As-As and the Ga-
values!. The overall agreement for the bulk modulus a
elastic constants is quite good. However, we were not abl
find a parameter set that leads to a negative Cauchy pres
if the error for the elastic constants is restricted to bel
10%. The parameters for the As-As interactions are fitted
the bulk modulus and the cohesive energy of arsenic in
A7 structure by neglecting interactions between differ
layers. The potential function for arsenic exhibits a minimu
of the potential energy for theA7 structure. Its use for MD
simulations at a finite temperature would requirep bonding
to stabilize the layers.

We have not fitted the Ga-Ga interactions to the rat
complicated orthorhombic structure but followed the a
proach of Itoet al.34 and fitted these parameters to Ga in t
fcc structure. For both the Ga-Ga and the As-As interacti

,
l

TABLE V. Defect formation energies of Si interstitials: the te
rahedral (ET), the hexagonal (EH), the^110& split (E^110&), and the
extended configuration (EIe), and the vacancy formation energ
(Evac). The values~all in eV! obtained via the Tersoff potentia
(T3), a tight binding model~TB, Ref. 46!, and the local density
approximation~LDA, Refs. 47 and 48! are given for comparison.

Source ET EH E^110& EIe Evac

present work 4.03 4.80 4.63 3.81 4.04
T3 4.09 5.22 4.64 4.50 3.70
TB 4.12 5.93
LDA 3.30 3.75

TABLE VI. Volume and energy differencesDE of several
structures of Si and GaAs with the present potential compared
LDA results. For Si, the results are also compared with those
tained with the Tersoff potential (T3). DE is measured with respec
to the zinc blende structure and is given in eV/atom for Si and
eV/molecule for GaAs.V0 is the volume per atom for Si and th
volume per molecule for GaAs in the diamond and zinc blen
structure, respectively. See the text for references.

V/V0 DE

Model Structure LDA
Present
work T3 LDA

Present
work T3

Si b-Sn 0.76 0.76 0.77 0.27 0.30 0.33
sc 0.79 0.81 0.82 0.35 0.29 0.32
bcc 0.73 0.73 0.73 0.53 0.43 0.56
fcc 0.72 0.73 0.72 0.57 1.36 1.13

GaAs cinnabar 0.83 0.89 0.35 0.25
NaCl 0.80 0.79 0.54 0.50
CsCl 0.77 0.67 1.00 0.78
SOD 1.24 1.30 0.40 0.20
ATO 1.33 1.40 0.42 0.20
ATV 1.03 1.09 0.29 0.15
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there is a large number of parameter sets yielding the cor
bulk moduli, cohesive energies, and bond lengths. For b
types of interactions we have chosen sets that led to rea
able bond lengths of the dimers of the reconstruc
GaAs~001! surfaces. With the present potential, all differe
phases of GaAs~001! surface reconstructions are stable in
MD simulation at room temperature. Of course, it is n
useful to draw conclusions about the relative stability of
different phases of the surface reconstruction since ch
effects are not included in this potential. The parameter
was tested for some point defects in GaAs. Seong
Lewis35 have shown in their tight binding calculations th
the Ga vacancy exhibits, irrespectively of the charge state
inward relaxation of about 0.32 Å. Our parameter set yie
an inward relaxation of 0.4 Å. For the Ga antisite, we obt
two minima: one corresponding to the ‘‘broken bond’’ g
ometry and the second showing a ‘‘bond’’ between the GAs
and the neighboring Ga. For the geometry of the As antis
which is also independent of the state of charge, we ob
an outward relaxation by less than 1%, in good agreem
with the results of Seong and Lewis.35 The formation ener-
gies of these point defects are in the range 1–3 eV depen
on the atomic chemical potential chosen. These are rea
able values for the neutral defects. In contrast to the ge
etries of the defects investigated here, the charge state o
defect and the electron chemical potential strongly influe
their formation energies~ranging, e.g, from 2 to 5 eV for the
antisite defects!. These effects are beyond the present mo

As a further test for the As-As interactions we inves
gated the geometries of the split As antisite and the~110!
split As interstitial as it was recently proposed by Landm
et al.36 We found that all bond lengths differ by less than 5
from those obtained by theab initio calculations of Landman
et al. The binding energy of 0.8 eV of the split antisite rel
tive to the isolated split interstitial and the isolated As an
site is somewhat lower than theab initio value of 1.1 eV.

Finally, the GaAs potential is tested for other crys
structures. We have investigated GaAs in the high-den
phases CsCl and NaCl and in the recently described cinn
phase as well as in the theoretical low-density pha
ct
th
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sodalite~SOD!, ALPO4-25 ~ATV !, and ALPO4-31 ~ATO!. In
analogy with zeolite nets, the latter phases were propose
expanded volume phases and investigated viaab initio meth-
ods by Demkovet al.37 Our potential gives the correct order
ing of the high-density phases with respect to their energy
compared toab initio results38–40and at least a good estima
tion of the low-density structures, with the maximum error
energy being 0.22 eV per molecule. The results are sum
rized in Table VI.

IV. CONCLUSIONS

We used the tight binding second moment approximat
to describe the bond-order term in an empirical potent
Using quantum mechanically motivated hopping integr
and on-site energies and fitting the two-body parameters
lattice constants and elastic properties yield an empirical
tential for Si and GaAs. Since the number of adjustable
rameters is relatively small and the most complicated par
the fitting, i.e., fitting the angular terms, is avoided, the p
tential can readily be applied to a wide range of materials
addition, this potential allows one to directly include info
mation from tight binding calculations since, at least in th
real space representations, bond orders and bond energie
the physical quantities that are dealt with. We emphasize
the parameter sets presented here were fitted only to pro
ties of the diamond~zinc blende! structure. However, it
should be possible to find parameter sets that can desc
different phases simultaneously or to fit the parameters
another specific phase of interest.

Since it is assumed to be negligible for the systems c
sidered here, our approach has omittedp bonding for the
sake of simplicity. However, the inclusion ofp bonding for
appropriate systems is possible at no extra cost and will
considered in a subsequent paper.41 Several authors have
proposed to use environment-dependent hopping integra
the moments expansion42 as well as in conventional tigh
binding models43 instead of fixed values in order to take int
account that hybridization may change with coordinatio
Such an approach can most easily be implemented in
present potential and is under development.
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47P. E. Blöchl et al., Phys. Rev. Lett.70, 2435~1993!.
48A. Dal Pino, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev

47, 12 554~1993!.


