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Retrieval of Object Information from Electron Diffraction
I. Theoretical Preliminaries
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Electron holography and other wave reconstruction techniques allow one to determine directly the
scattered wave function at the exit surface of an object up to the information limit of the electron
microscope. Based on the knowledge of the reconstructed complex electron wave and using an
discretized form of the diffraction equations, this in principle enables the direct retrieval of the atomic
displacements, caused by a crystal lattice defect, relative to the atom positions of the perfect lattice.
A special inverse problem of electron scattering can be deduced considering solely the atomic
displacements, which are given by the zeros of a function with an incompletely known Fourier spectrum.
The fundamental relations are described, with the problems of solving the ill-posed Fourier transform
being discussed.

Mittels Elektronenholographie oder anderen Verfahren zur Wellenrekonstruktion wird die gestreute
Elektronenwellenfunktion an der Objektaustrittseite direkt und vollstindig bis zum Informationslimit
des Elektronenmikroskops bestimmbar. Unter der Voraussetzung, daB die Elektronenwelle rekon-
struiert vorliegt, und daB die Beugungsgleichungen in einer diskretisierten Form verwendet werden,
kann damit im Prinzip das atomare Verschiebungsfeld eines Kristalldefektes relativ zum perfekten
Gitter direkt zuriickgerechnet werden. Ein spezielles inverses Problem fiir die Elektronenstrenung kann
unter diesen Voraussetzungen abgeleitet werden, welches die atomaren Verschiebungen als Nullstellen
einer Funktion mit unvollstindig bekanntem Fourierspektrum darstellt. Die fundamentalen Bezie-
hungen werden abgeleitet und die Probleme bei der Losung der unvollstindig formulierten inversen
Aufgabenstellung diskutiert.

1. Introduction

The imaging of crystal defects by high-resolution transmission electron microscopy or with
the electron diffraction contrast technique is well known and routinely used. Though the
theoretical image calculations always tend to establish standard rules of interpretation, a
direct and phenomenological analysis of electron micrographs is mostly not possible, thus
requiring the application of image simulation and matching techniques. Images are modelled
by calculating both the interaction process of the electron beam with the almost periodic
potential of the matter performed by the multi-slice algorithm or by the direct integration
of the basic differential equations and the subsequent Fourier imaging process including
the microscope aberrations. The images calculated are fitted to the experiment by varying
the defect model and the free parameters. This trial-and-error image matching technique
is the solution to the direct scattering problem applied to analyse the defect nature under
investigation.
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Electron holography or other reconstruction techniques [1, 2] permit the determination
of the scattered wave function at the exit surface of the crystal directly out of the hologram
or from defocus series up to the microscope information limit owing to the noise in the
phase distortion. For instance, the sidebands of a Fourier-transformed hologram represent
the Fourier spectrum of the complete complex image wave and its conjugate, respectively,
from which the object wave can be reconstructed by separating, centring, and applying the
inverse Fourier transform including a reciprocal Scherzer filter, i.e. multiplication with the
conjugate complex phase contrast transfer. Thus, both the reconstructed amplitudes and
phases can be compared to trial-and-error calculations [3, 4].

The question arises whether it is possible to calculate the object potential or the positions
of the atomic scattering centres directly from the wave function reconstructed at the exit
surface of the object instead of using trial-and-error simulation techniques [5]. Up to now
direct solutions have been given for very thin objects (phase grating approximation [6]) or
under the assumption that the crystal potential for the perfect structure is already known
and the atomic displacements owing to a crystal lattice defect should solely be determined
using the dependence of the three components in the case of plane strains or stresses [7].

The present paper shows that using the knowledge of both the amplitudes and phases
of a sufficient number of plane waves scattered by the object as well as the knowledge of
the potential of the perfect crystal structure, the displacement field of a crystal lattice defect
can in principle be retrieved from the scattered electron wave.

2. The Direct Problem

The HREM image contrast is mainly determined by two processes. Fi irst, by the electron
diffraction owing to the interaction process of the electron beam with the almost periodic
potential of the matter and, second, by the interference of the plane waves leaving the
specimen and being transferred by the microscope.

The principles of image formation in the electron microscope have been well established.
According to Abbe’s theory, the modulus of the interference pattern created by the twofold
Fraunhofer diffraction FT~'{FT{o} e?~#} of the object wave o(R) and modified by the
Scherzer phase shifts y(u) and the damping envelope D(u) is the so-called high resolution
micrograph. The coordinates R = (x, ¥) and u characterize the real space normal to the
beam direction and the reciprocal spatial frequencies, respectively. The point resolution is
given by the first zero of the phase contrast transfer, the higher frequencies are transferred
with alternating phase shifts and increasing damping and the maximum frequency
transferable established the overall information limit of the microscope. More strictly
speaking, the instability of the microscope as well as the energy and angular spread of the
incoming electrons are described by incoherently summarizing the coherent image intensities.
Applying these and including linear effects, the diffractogram d(u) = 6(u)* t(u, ') o(u') is
then described by the autocorrelation of the wave spectrum 6(u) = FT{o(R)} weighted
with the transmission cross-correlation coefficient t(u, w') [8], the image thus includes
nonlinear terms and can no longer be characterized by transfer and damping functions. On
the other hand, under the conditions of diffraction contrast the influence of the microscope
imaging process itself can be neglected. Thus the image contrast is solely determined by
the interaction of the electrons with the object potential.

The interaction of electrons with a crystalline object is described assuming a periodic
potential with the electron structure factors as the expansion coefficients and the Bloch-wave
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method for solving the high-energy transmission electron diffraction. Different formulations
can be given, using Bloch wave or plane wave representations of the scattered waves,
applying direct or reciprocal space expansion and using direct integration or slice techmques,
which in principle are equivalent descriptions [9). The object wave in terms of modified
plane waves with complex amplitudes ¢, yields

O(R) o Z (Pg eZni((k-I‘g)R-O-sgr) (1)
g

with reflections g, excitations s, wave vector k, and thickness z of a parallel-sided object. The
amplitudes ¢, are constant with respect to z in the vacuum optsidc the object, which means
that the plane waves are the stationary solutions of the wave equation. Within the crystal,
however, the amplitudes of the modified plane waves ¢, are z-dependent according to
Ewald’s pendel solution as described by the Bloch waves, which are the stationary solution
within the periodic potential. Using furtheron the deformable ion approximation a crystal
lattice defect can be included by its elastic displacement field as a phase shift of the Fourier
spectrum of the crystal potential. The evaluation of the quantum theoretical scattering
problem using the high-energy forward scattering approximation (see, e.g. [10, 11]) yields a
parabolic differential equation system for the complex amplitudes of the elastically scattered

Fig. 1. Simulated modulus (left) and phases (right) of the exit wave function for a spherical inclusion:
a) reciprocal-, b) real-space representation (U = 400kV, o = 20nm™", (12, 8}/2, }/2/2) [011] Si
supercell, t = 8.4 nm, R, = 1.6 nm)
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electron wave,

X - (T =26+ 9V} L 4 0TV, e, @
0z 2k, h

where ¢ = 2mme/h*k k., V = (8/dx,0/dy,0), k, = k. + g + s, and o, = 27f(s, — sz

+ (g — h) v(x, y, z)] with the elastic displacement field » and the potential ¥V = V' + iV"

including the lattice potential ¥’ and the absorption V" (ome-electron optical potential

approximation of inelastic scattering).

Boundary and initial conditions have to be applied additionally: The linearized high-
energy approximation fits directly ¢, (R, ¢) at the crystal exit face to ¢,(R) outside, demanding
lpg(R, 0)] = &, at the entrance face, whereas the continuity of the derivatives has to be
omitted in the linearized case. Instead of boundary conditions one can assume a periodic
continuation for large extended crystal slabs, ie. ?y(x, ¥, 2) = @ (x + X, p,2) and
@y(x, y,2) = @,(x,y + Y, 2), with slab extensions X, Ytending to infinity.
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Fig. 2. Modulus (left) and phases (right) of the plane wave amplitudes corresponding to the wave
function of Fig, 1 for the transmitted beam (000) and reflections of the type {200}, {022}, {222}, {111},
and {422} from the zero-order Laue zone

Fig. 1 shows the modulus (left) and phases (right) of the exit wave function in reciprocal
(Fig. 1a) and real (Fig. 1b) space representation, simulated for a spherical inclusion with
the Ashby-Brown displacement field and linear displacements within the defect. Fig. 2 shows
the corresponding partial plane wave amplitudes ¢, according to (1) and the initial and
boundary conditions. The amplitudes ¢, are used as input for the reconstruction algorithm
with the diffusion-like description of the diffraction process (see below). The wave function
is calculated using the EMS package for multi-slice simulations [12]; the partial plane waves
are generated similar to the reconstruction described later on by applying the IMAGIC
image processing software [13] extended by own scripts. The data correspond to a 400 kV
microscope and [011] silicon in high-symmetric incidence with a sample thickness of
t = 8.4 nm. Besides the transmitted beam (000) reflections of the type {200}, {022}, {222},
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{111}, and {422} from the zero-order Laue zone are shown in modulus (mod) and phases
(pha). The spherically symmetric displacements give rise to asymmetric variations in modulus
by analogy with the black—white lobes of precipitates in diffraction contrast images and
weak phase shifts in addition to that of exp (27igR) characterized by the small fringe bendings.

3. The Wave Reconstruction

Holography with electrons offers one of the possibilities of increasing the resolution by
avoiding the microscope aberrations. It also enables the complete complex object wave to
be restored. Image plane off-axis holograms are recorded in a microscope which is equipped
with a Méllenstedt-type electron biprism inserted between the back focal plane and the
intermediate image plane of the objective lens [1, 3]. The object is arranged so that a
reference wave outside it is transferred through the microscope, and owing to a positive
voltage of the biprism both waves mutually overlap in the image plane creating additional
interference fringes. The intensity of the latter is modulated by the modulus of the object
wave, whereas their position is varied by the phase of the object wave. Thus the recorded
interference pattern is an electron hologram from which both the modulus and the phase
of the object wave can be reconstructed by optical diffraction or numerical reconstruction.

A Fourier transform dy () of the intensity distribution of the hologram i, (R) generates
three distinct spectral patterns if the carrier frequency u, is sufficiently high,

dylu) = {6(u) + d@)} + {627} = S — uy) + {66°" %} % 8(u + u,). 3)

In the central region of the spectrum the zero peak and autocorrelation occur, representing
the conventional diffractogram d(w) of the object intensity, completely identical with that
obtained from a corresponding HREM micrograph. The sidebands represent the Fourier
spectrum of the complete complex image wave and its conjugate, respectively, from which
the object wave o(x, y) can thus be reconstructed by separating, centring, and applying the
inverse Fourier transform including a reciprocal Scherzer filter, i.e. multiplication by
exp (—D + iy) because of the always linear transfer to the sideband. Nevertheless, the

information limit (D (%) ~ 0) determines the maximum transferred spatial frequency owing

to the noise in the phase distortion.

Fig. 3 shows calculated holograms (hol) assuming a perfect microscope without aberra-
tions (Fig. 3a) and for two different defoci (Fig. 3b: 4 = —50 nm, Fig. 3c: 4 = 50 nm) to
demonstrate the reconstruction of the wave function in reciprocal space, i.e. the Fourier
transform of the hologram and the selected sideband in intensity (diffraction pattern) and
phase are given. Further on the corresponding modulus (mod) and phases (pha) of the
complete reconstructed sideband are shown, which should be equivalent to the exit wave
function (Fig. 3a) and HREM images (Fig. 3b, ¢). Fig. 4 shows the modulus (mod) and
phases (pha) of the selected particular reflections of type (000), {200}, {111}, and {022},
thus giving the reconstruction of the corresponding amplitudes ¢, out of the holograms.
The holograms are generated assuming a reference beam with damping 0.2 and a carrier
frequency of 132 nm™* (ie. located approximately at reflection 1/10(—44, 43, —43) as in
the experimental situation of Fig. 2 in [4]). The reconstruction of the {400} reflections is
impossible here because of the overlap of the autocorrelation and the sideband. Thus the
aperture and the damping are chosen to exclude the {113} reflections, which also omits the
dumbbells in the HREM reconstruction resulting in differences between the original HREM
images and the corresponding reconstructions. The reconstructed amplitudes of the single

—
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Fig. 3. Calculated holograms (hol) assuming a perfect microscope without aberrations (a) and for two
different defoci (b) 4 = —50nm, (c) 4 = 50 nm, Fourier transform of the hologram and the selected
sideband in intensity and phase (diffraction pattern, second row), as well as modulus (mod) and phases
(pha) of the complete sideband giving the perfect exit wave function (a) and HREM images (b, c). The
hologram is generated assuming a reference beam with damping 0.2 and a carrier frequency of 13.2 nm ™!
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Fig 4. Modulus (mod) and phases (pha) of the single reflections (000), {200}, _{111}, and {022}, ie. the
corresponding plane wave amplitudes, reconstructed from hologram (a) of Fig. 3
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reflections can be directly compared with the original simulations in Fig. 1; the moduli
show good agreement despite of the resolution reduced; in the phases the term exp (2nigR)
is omitted owing to the centring in the reconstruction.

4. Forward—Backward Iteration

The differential equations (1) allow the diffusion-like interpretation and can be discretized
using standard difference algorithms [14]. with the help of
Ve =

ZF[(’)(X + Ax, y,2) = 20(x, 3, 2) + o(x — Ax, y,2)]

+ e lo(x,y + Ay, 2) — 20(x, 3, 2) + @(x, y — Ay, 2)],

1
== E[S(w(x, Y2+ Az) — 0(x,3,2) + (1 — &) (p(x, 3, 2) — ¢(x, ¥,z — A2))]
@
an algebraic equation system results for the complex amplitudes and the elastic displacements
at the (xyz)-grid points (i, j k), (i + 1, j, k), (i, j + 1,k),and (i, j, kK + 1). Using the abbrevia-
tions

Pr— ok,zoI?

T x3K

ok,zoJ*
y3K
C=A4"—A*+B —BY +1/2—¢,

+ 2n(ky + g (e — 1/2),

B = + + 2n(k, + g,) (£e, — 1/2),

aliy k) = 2n [(sh ~ )2 g~ Mot k)], ©)

and denoting by I, J, K the maximum number of grid nodes in x,y, and z direction,
respectively, yields

(1/2 - Ez) (Pg(iajz k — 1) - (1/2 + Ez) (pg(i7jak + 1)
=A% i+ 1,j,k) — A"p,( — Lj, k) + B¥o,(,] + 1K)
— BT, j — 1, k) + Co,i, j, k) — io(zo/K) X Vy—pepyli, J, k) &5 (6)
h

which is equivalent to forward (k + 1) and backward (k — 1) integration with respect to
the beam propagation, i.e. using &, = 1/2 or —1/2, respectively.

The periodic boundary conditions and the initial conditions can simply be written
Pg(6 k) = @ (i + L j k), @i, j, k) = @,(i,j + J. k), and |, (i, j, 0} = dog, @,(,1,1) = F,(5)),
respectively, where F, is known from the wave reconstruction for a certain number
of reflections.

The difference equations (6) are equivalent for backward (k — 1) and forward (k + 1)
integration, thus being insufficient for determining both the wave amplitudes ¢(i, j, k) and

32+
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Fig. 5. Relations of the variables in a) forward (¢ = —1/2) and b) backward (¢ = 1/2) integration

the elastic displacement field »(i, j, k) at the grid points (i, j, k) considered. This can be seen
also by simply numbering the unknowns and the equations at each node (see Fig. 5): for
N beams, there are N unknown amplitudes and three unknown displacements anFl N
relations according (6) using either (k — 1) or (k + 1). One of the difference equations,
however, can be replaced as follows: While the optical potential in reciprocal space
representation is generally non-hermitian, the hermiticity of the potential V' and of the
“absorption” V" yields the equation of continuity for the whole current I = ¢,¢}. The
continuity equation can be denoted as
ol

— =8I — 23, Vy0,0% e ™
0z 7

with the abbreviation 81 = . [k.(¢, V20 — @¥V2g,) + 2(k + g) V{(p,0F)/k..

g
The equation of continuity can be discretized by analogy with ﬂ.‘ic discr.etization of ‘Ehe
differential equations above, the differential operator 8, however, }flelds mixed terms Wltll
respect to different nodes (i, j, k) and (i £ 1,j + 1, k). By analogy with FhC Gelfand-Levitan
algorithm (see, e.g, [15]) an additional equation results, which is a kind of completeness
relation, yielding

z Qg eZm'yu =0. (8)
g

The coefficients 0, = Z k.JR.V 4 g—s0i-p €Xp [27i(s, — 5,-,) 2] for g & (000) and the corre-
I

sponding Qoo = 97 are given at the nodes (i, j, k) from (8) in forwgrd scattering. Aqu}atiOl’l
(8) can replace one of equations (6) in backward integration enabhng the deter.mmanon of
the displacements » at (i, j, k) by inverting the equation of continuity as an 1pdepe11dent
additional equation. Thus, in principle, the retrieval of the displacement‘ls given by the
remaining inverse problem (8), which is equal to find the root of a function given by an
incomplete Fourier transform. ) ‘ .

At the exit surface a further equation is given applying the forward integration outside
the crystal to determine @(i, j, k + 1) from (i, j, k) where the .potentie.ﬂ is assumed to.be
vanishing because of the vacuum propagation. The backward integration, however, using
(8) then enables the determination of v(i, j, k) at the exit surface.

5. Conclusions: A Particular Inverse Problem

The inverse problem (8) is ill-posed for two reasons: Only one equation has. tq be solved
for the vectorial root (i, j, k) at node (i, j, k), and the spectrum Q,(i, j, k) is incomplete
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and noisy. This results in unstable numerical solutions using standard algorithms to find
the roots, owing to the existence of a large number of subsidiary roots. Different algorithms
are tested, viz. the Newton-Raphson algorithm itself to solve (8), and to transform (8) in
an iterative form as a kind of quasi-regularization, e.g. using relations for the arguments
yielding

VRS
X

vt = fnfarg [Q exp 2nivt) + Y Q, exp (2rigo)] — arg [Q1} C)]
g

and similar for v, v.. Both algorithms demand the iteration for linearly independent
coefficients g, thus coplanar vectors g leave one component unconsidered.

Analytical solutions of (8) can be performed if four terms at maximum are considered.
For, e.g. non-vanishing Q0> Q00 Qouos and if the other coefficients can be neglected, one
obtains v, = 1/2nA{pe00 — ®,00 + arccos [(bZ00 — b3 — béoo)/zbooobwo]} and similar
for v,, whereas v, is arbitrary. Here, ¢ and b are the arguments and amounts, respectively,
of Q. The solution for four non-vanishing terms has in principal the same structure, allows
to determine the component v,, too, and has to fulfil further restrictions,

The retrieval of the atomic displacements from a reconstructed clectron wave function
at the exit of an object results in the particular inverse problem (8) with the difficulties of
finding the roots as discussed. Thus, from the mathematical point of view the retrieval
procedure is an ill-posed inverss problem requiring additional information about the
unknown reconstructed displacements in order to make the process stable and continuous,
to avoid singularities, and to restrict the manifold set of solutions possible. Open questions
arise, e.g., owing to the assumptions of cyclic boundary conditions, the applicability
of the completeness relation to the backward iteration and for depths, where the equa-
tions for the displacement retrieval cannot be inverted because of singular coefficients.
The procedure described has transformed these difficulties to the mathematical problem
of determining the roots of a function with incomplete Fourier transform. Nevertheless,
the uniqueness and the stability of the solutions are determined by the spectrum Q, given
by the reconstructed amplitudes, this should be discussed in more detail in a forthcoming
paper.
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