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Burgers Vector Determination in TEM
by Using the Dislocation Parity Analysis

By
S.S. Ruvimov?) and K. SCHEERSCHMIDT

A modified method of identifying the Burgers vector b is proposed, which is based on the extended
analysis of dislocation contrast features. High voltage electron microscopy (HVEM) as well as the
computer simulation of the electron micrographs are applied to study the contrast behaviour of mixed
dislocations with a large screw component of the Burgers vector under different diffraction conditions
in order to check the validity of the method proposed. The analysis of the contrast oscillations along
inclined dislocations or the image shift relative to the projection of the dislocation line enables us to
determine the ‘dislocation parity’ P = sgn (Ix b - B) while the halo contrast can be used to define the
orientation of the ‘additional half plane’, which is characterized by the normal e = /x b/J/x b to the
glide plane. The parity and sgn (g - ) analysis enables the unambiguous b vector determination whenever
solely one invisibility criterion is applicable. The dislocation parameters in heterostructures are
investigated by the above method.

Eine modifizierte Methode zur Bestimmung des Burgersvektors 4 wird vorgeschlagen, die auf einer
detaillierten Analyse von Kontrasterscheinungen an Versetzungen beruht. Um die Griltigkeit der
vorgeschlagenen Methode zu testen, wird sowohl die Hochspannungs-Elektronenmikroskopie (HVEM)
als auch die Computersimulation der Abbildung zur Untersuchung des Kontrastverhaltens gemischter
Versetzungen mit groBem Schraubenanteil des Burgersvektors unter verschiedenen Beugungskontrast-
bedingungen verwendet. Die Analyse der Kontrastoszillationen entlang geneigter Versetzungen oder
die Bildverschiebung relativ zur Projektion der Versetzungslinie ermdglichen die Bestimmung der
»Versetzungsparitit“ P = sgn (Ix b - B), wihrend der Halokontrast geeignet ist, die Orientierung einer
»eingeschobenen Halbebene* zu definieren, d. h. die durch die Gleitebenennormale e = Ix b/l x bl
gekennzeichnete Richtung. Wenn Kontrastausldschung mindestens fiir einen Beugungsvektor erreicht
werden kann, dann erlaubt die Analyse der Paritit bzw. von sgn (g - e) eine eindeutige Burgersvektor-
bestimmung. Mit der vorgeschlagenen Methode werden Versetzungsparameter in Heterostrukturen
untersucht.

1. Introduction

In transmission electron microscopy (TEM) the Burgers vector of a dislocation is usually
determined in at least three different ways. The first one is based on the invisibility criterion
&' b = 0, where g is the diffraction vector and b the Burgers vector [1, 2). In general, two
noncoplanar g vectors fulfilling the invisibility criterion are necessary and sufficient to
unambiguously determine the b-axis. Difficulties arise if the invisibility rules cannot be
strictly applied to, e.g., anisotropic media, certain mixed or partial dislocations, many beam
excitations, etc. [3]. The most important restriction, however, is the impossibility of generally
determining the direction (or sense) of b by using the invisibility criterion. Thus it is necessary
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The third way, proposed by Marukawa [10] makes use of characteristic tl}rfagieﬂocaﬁon
such as the asymmetry related to the signs of g+ & and (g- b >fl)> wherell 1tsh tihe robabe
line vector. Analysing the image asymmetry at different g reflections reveals a_bIe e
orientation of the Burgers vector lies at a solid angle so small that it is Posgie i
b directly from crystallographically allowable vectors. Thotxgh rather su'lt?1 ; dislications
use the method has some restrictions, too. For example, it cannot be applied to
lying parallel to the foil surface. ‘ _ ) . o
’ Tiep direction of the Burgers vector b is always strictly atssomated with tll;e 1'11’;6 3gﬁztlt(})£
I in agreement with the FS/RH convention (ﬁnish—stgrt/rlght hand) [Mt’; _], i. r.iam o e
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change of the coordinate system, the sense of b and / asf well }zlis the trli ;11 Tj e en
i i i ion. Therefore, the prac
arameters change sign under coordinate inyersion. ' : ermin
Ef the dislocation sign may be unified by using a'no’Fhelj d1§lof:atlop par?rr;etel directly
characterizing the relevant physical properties (extrmmg—mftrﬁlsl;,dmtlzflr';ii :t.i.on Cucha
i i i thods of the b de
The aim of the present paper is to modify the me : L ena
biguously define b whenever solely :
way that contrast analyses allow us to unam cfine b whenever y
inv)ilsibility criterion can be applied. Indeed, one g vector fl.llﬁllm_g the 1nvv151b111.ty‘ cr;tz;m;f
can be found rather easily in most of the practical cases, implying also lh.e p10§ec i » of
the b-axis on the image plane. Analysing characteristic image feat.ures _by using parame e
in vector form, which are invariant to the coordinate inversion, 1S advantageous for
determining the dislocation sign. » ) L
The esse%ltial point of our consideration is the replacement gf thehdISl(‘)Ca:l‘t)'l:) :irfl t llr;
irecti iti hich is based on the orientati
the sense of the b direction by another deﬁnm?n w. as | ent
‘additional half plane’ related to the optical axis and called d1sl(?cat10n parity [113].. Bai;q
on a general consideration of contrast behaviour t}}e modified method re ates o fc}(
inversion-independent parameters to the corresponding image features as, e.g., image s
or contrast oscillations.

2. Dislocation Parity

The Burgers vector b of a dislocation is known to be a pseudo-vector wh1cl{1 1shf1xed oﬁz
with respect to the dislocation line vector ! (FS/RH rule) [11, 12].. Indeed, it ¢! alfzg;s Lhe
sign (direction) if  is inverted: b — —b, if / - —1 Thus, two pairs of ve<':'tlors (d,.rfer i
(—b, — 1) characterize the same dislocation while (.b, =1 _and_ (=50 de_§c11.)e a differe .
one, which is antiparallel. In this sense, the second dislocation is of opp.osne sign compare
with the first one. For a pure screw dislocation (& J) the two different descrfptlor{s
correspond to right-hand (b- 1> 0) or left-hand (6-1 < 0) screws, wbereas for d 1ptne
edge dislocation (b L J) two opposite positions of the extra half plane in the crystal are
presented [14] (see Fig. 1a).
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l Fig. 1. Schemes of a) two different geometrical situa-
- ~ AT -] - tions in a crystal with respect to the edge dislocations
L] =t > b of opposite sign and b) the coordinate system in
iy T relation to the image of a crystal foil containing a

mixed dislocation

. The geometry of the dislocation within the
crystal is invariant to the change of the coordi-
nate system (e.g., / vector direction), hence, with
I'being fixed, b is unambiguously determined by
the contrast analysis. For example, Marukawa
[10] ascertained the respective b orientation by
using the contrast asymmetry according to
: sgn (g - b) for fixed I
! Foll and Wilkens [6] assumed the positive
T direction of the normal n to the plane of the
: dislocation loop and, hence, the positive I direc-
! tion at each point of the loop in order to
. DU enable the unambiguous & vector determination
ST D : b by inside-outside contrast. In other words,
they fixed the coordinate system so that the
positive 4 direction with respect to n gets a
certain physical meaning: n- b > 0 was used for the vacancy loop and n- b < 0 for the
interstitial one.

For a single dislocation with a non-vanishing edge component, the normal e = I x b/l b|
to the glide plane is a natural invariant parameter which is independent of the I direction
chosen (see Fig. 1b). Vector e turns to the half space in the crystal with extra material, the
additional lattice plane is characterized by the Burgers circuit. In the following this lattice
half plane perpendicular to the edge component of b should be called the ‘additional or
extra half plane’. Contrary to b vector e is independent of the coordinate system chosen
and, hence, is a real vector. Indeed, e(l, b) = e(—1 —b),bute(—1b) = e(l, —b) = —e(, b).

It is advantageous to use vector e instead of b for characterizing the dislocation signs of
edge and mixed dislocations. Sometimes the simple convention is used that an edge
dislocation is considered positive if the e vector turns up, and negative if e turns down [14].
Especially for heterostructures the sign of the misfit dislocation is strongly connected with
the misfit in the lattice parameters of the epilayer a; and the substrate aq. Indeed, the
position of the additional half plane related to the interface normal » depends on the misfit
sign yielding (Ix b - n) < 0 for Aa = a; — a¢ > 0, and vice versa.

In electron microscopy the vertical direction is related to the optical axis and can be
fixed by the beam vector B which turns up to the electron gun, thus being perpendicular
to the image plane. Therefore, the dislocation sign is controlled by the product of B- e. Let
the parameter P = sgn (B ¢) be called dislocation parity because its value is defined as
+1. The convention will be used that P = +1 characterizes the positive dislocation. A
relation of the parity P to b may clearly be concluded from the equation P = sgn (B - e)

~
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= sgn (B Ixb) = sgn(Bx 1- b). For the positive dislocation, the projection of the b vector
on the image plane turns to the same side of the dislocation line as that of vector
BxI(BxI-b>0), ie. it turns to the left side if looking along vector £ Thus, to know the
parity means to know the sign of the edge component of the b vector in the image plane
for I fixed.

The limitations of the P definition are the following: first, the parity convention cannot
be applied to pure screw dislocations (le| = 0), and second, it is uncertain if - B = 0. In
the latter case vector e lies in the image plane (b is parallel to the B-axis), however, it is
also possible to define the dislocation sign by using another convention so that g-e > 0
will correspond to a positive dislocation and g - ¢ < 0 to a negativ one.

The knowledge of the signs of b components both parallel and perpendicular to the image
plane (P and sgn(g- e), respectively) is often sufficient to characterize b in most of the
practical cases if a favourable type of b is known from crystallography and if the projection
of b was determined by the invisibility condition for at least one g vector.

Our considerations are in accordance with a general description of the contrast behaviour
(see, for example, [3]) of dislocations in isotropic media based on three contrast parameters
n=gh p=_gh, m=(g bx) (width, symmetry, visibility). The parity is similar to
parameter n and the product of g - is proportional to m. However, contrary to n the parity
P is independent of the direction of I while n = g - b changes its sign for I - —I Such
features as, e.g., halo contrast, image shift and black—white oscillations are known to be
controlled by the dislocation sign [2]. Therefore, the parity can be determined by the use
of contrast effects, which are sensitive to n, for instance, image shift with respect to the
dislocation line [4 to 6, 15] or oscillating contrast [10], while sign (g - €) can be revealed by
means of residual (halo) contrast, which is sensitive to m [7, 8] (see Table 3).

Experimental and theoretical studies of dislocation contrast were carried out in order to
demonstrate the application of the parity analysis to the Burgers vector determination.

3. Experimental and Simulation Technique

A number of threading dislocations in a GaAlAs/GaAs (001) double heterostructure have
been used for contrast experiments, carried out at the J EOL JEM 1000 electron microscope
at an accelerating voltage of 1 MV. The heterostructure has been grown by liquid phase
epitaxy (LPE) under standard conditions pointed out in 16, 17]. The electron microscope
specimens were first prepared by chemical polishing followed by ion milling down to a
thickness of about 0.45um. Image simulations were performed using the two-beam

approximation of dynamical scattering in the Howie-Whelan formulation (see, e.g., [3]).

4. Results and Discussion

Fig. 2 to 5 represent electron microscope micrographs and corresponding simulated images
of two dislocations (A and B) under different diffraction conditions. The B vector was
approximately parallel to [001] and differed from this direction by not more than 3° to 5°
in the contrast experiments. The normal F to the upper thin foil surface was approximately
parallel to [001], too, and the foil looked like a plate. A stereo pair was prepared to study
the spatial arrangement of dislocations in the foil. In accordance with Head et al. [9] positive
1 directions of these inclined dislocations were chosen to be turned up.

Conventional diffraction analysis has been applied to determine all parameters of these
dislocations. First, in accordance with the zincblende structure of AlGaAs the most
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4.1 Oscillating contrast

jori i ion i in Fi demonstrate the strongly oscillating
The majority of the dislocation 1mages Fig.2to 5 e tlations are

contrast owing to the inclination of dislocation lines to the fo U ——
stronger at w = 0 (see, for example, Fig. 2b and 3b., ¢) and becom.e W o s 8t
|wl, in particular, for | = 2 (Fig. 2c, d). The deviation parameter 18 w =S¢

exéitation error and £, is the extinction distance [1].
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Fig. 4. a)to d) Experimental (central column) and calculated electron microscope images of dislocations
A and B under g = [220] for different w values

Based on the similarity of the oscillating contrast of inclined dislocations to the contrast
of the straight arrangement of precipitates it is possible to define the contrast vector 4o,
which goes from the centre of a black dot to that of a white dot at the point of emergence
of the dislocation at the surfaces (see Fig. 6). This is similar to the black-and-white vector
used in analysing the precipitates [18]. As the images show, vector 4, is independent of w,
but changes its direction for g — —g. In accordance with the symmetry properties of
dislocation images vectors 4, at the top and bottom points of emergence are parallel in
bright field images and antiparallel in dark field ones. The dependence of vector 4, on
dislocation and contrast parameters (see Table 2) is described by

Ay = n[lIx B]. 0
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Equation (1) is limited to cases with n = g b = 0 or [Bx ] # 0. Equation (1) is in good
agreement with Marukawa’s conclusion [10]: when looking along vector_l th('z first dark
contrast appears on the left of the dislocation line if g - b > 0, and on the right if g - b < 0.
Indeed, it is known (see, e.g, [2]) that in the bright field images the contrast at the point
of emergence of a dislocation ata surface is white if g(dR/dz) > 0,and dark if g(dR/dz) < 0.

4.2 Image shift in respect of the dislocation line

The changes of contrast on both sides of a dislocation line are asymmetric: the_ contr.ast
on one side is stronger than on the other for w # 0 [1, 2]. This means that the middle _hne
of the contrast is shifted with respect to the dislocation line. The shift can be characterized
by a vector 4, which is perpendicular to the projection of the dislocation line / on the image
plane (Fig. 6). The dependence of 4 on dislocation and diffraction parameters can be roughly
described [15] by

A ~ (g- ) wBxI]. (2)

Owing to the existence of a small spacing between the intensity peak position andA the
projection of the dislocation line also at w = 0 the dependence of 4 should be modified

Fig. 6. Characterization of the 1mage features by the contrast vectors. Oscillation contrast: a) BF
image, g+ b =2, w= 0 and b) DF image, g-b = 1, w = 0; image shift: ¢) BF image, g b = 2,
w > 0 and d) DF image,g- 6 = —1,w < 0
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yielding
4= (/¢)sen(s))/T + w2 [Bx1. ()

For |n| = |g- 8] = 2 and w = 0 (see, for example, Fig. 2c, d) the direction of the image
shift can directly be evaluated from the micrographs. It is obvious that if I —» —1, [Bx1]
and g - b change their signs simultaneously so that vector 4 will still be the same. If the B
vector changes its direction (for instance, by turning the sample in the holder) under the
same dlffractlon conditions vector 4 will also reverse its direction. Using (2) or (3) enables
one to determine sgn (n) by comparing the A direction with the [B x /] vector (Fig. 6).

4.3 Halo contrast

This type of contrast was investigated in detail both experimentally and theoretically for
pure edge dislocations [7, 8]. Almost all images with g - e % 0 show (see, for example, Fig, 3,
4) a distinct halo contrast, in particular, near the point of emergence of the dislocation at the
surface, in spite of the dislocations having a relatively small contribution of the edge com-
ponent of 4. The influence of screw component on the halo contrast is not sufficiently clarified
and will be investigated in detail in future. Furthermore, in the case of pure screw dislocations
the b-axis can already completely be determined by an invisibility criterion. Nevertheless the
main properties of the halo contrast, which are deduced from the micrographs, seem to be
very similar to those for pure edge dislocations [7, 8]. They are as follows:

1. In the images of dislocation segments situated near the foil surface the halo contrast
is observed to be the stronger, the closer the dislocation is to the surface. The intensities
of the halos are highest for w > 0 if the dislocation lies near the bottom surface, and for
w < 0 if the dislocation lies near the top one.

2. The halo contrast is observed in both dark and bright fields. The type of the halo
(dark or bright) strongly depends on the sign of (g - b x ) and is independent of the dislocation
position in the foil in the dark field. In the bright field, the halo has the same brightness
as in the dark field if the dislocation is situated near the top surface; it is of opposite
brightness if the dislocation is situated near the bottom surface.

Therefore the behaviour of the halo contrast enables us to determine the projection of
e on the image plane in a simple way:

g-e>0 if the halo contrast is bright,

@

gre<0 if the contrast is dark

for both points of emergence of a dislocation in dark field and of an upper dislocation
surface in bright field (see Table 2). For the bottom point of emergence of a dislocation in
the bright field the halo contrast is reversed.

4.4 Methods of Burgers vector determination

In order to determine the Burgers vector b of an arbitrary single dislocation, several vectors
probable for b should be deduced first by means of object crystallography. In general, three
different ways can be used to reduce the residual freedom in the b space so that only one
b vector will be chosen.

The first way is very similar to Marukawa’s method [10]: analysing the contrast features
(oscillations, image shift, halos) under different g vectors in accordance with the vector
formulas in Table 2 reduces a solid angle for the probable b orientation thus enabling a

23
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Fig. 7. Stereographic (001) projec-
tion of a cubic crystal. The normal to
foil F and beam vector B are
close to the interface normal [001].
£400> Loaos 8220 are the diffraction
vectors which are used in the micro-
graphs of Fig. 2a, 2d, 3, respectively.
The line ! of dislocation B, its
projection ' on the image plane and
Burgers vector b are also indicated

unique b to be gained. At least, two experimental micrographs taken at different g reflections
are necessary to identify b. In the first image, at g; one can arbitrarily choose the direction
of dislocation line I and then draw the vector of [Bx]] (see Fig. 6). By examining the
contrast features in accordance with the formulas in Table 3, the sign of g, - b can be
determined as follows:

sgn (g, - b) = sgn (4 - Bx])sgn(w) (5a)
or
sign(g, ' b) = —sgn(do-Bx). (5b)

Now the possible orientation of b is limited by half the space, ie., the Burgers vector b
belongs to a hemisphere with g, being the pole of the stereographic sphere (see Fig. 7 and
8). The same procedure can be applied to the second image at g, and, hence, the space of
the & orientation possible will be further limited: b belongs to the common area of the two
hemispheres with g, and g, being the poles. Using a number of images, one can deduce
the space of the b orientations possible so that the Burgers vector can be chosen
unambiguously from crystallographically allowable vectors.

This procedure is illustrated by the scheme in Fig. 8 (row I) using an example of two
images of dislocation B shown in Fig. 2d and 3a. Owing to the favourable glide system for
AlGaAs which is (110) (111), the number of possible b vectors of (1/2) (110} type is twelve
taking into account the vector sign (Ia, Fig. 8). Both the oscillations and image shift in the
micrograph for g = [040] in Fig. 2d indicate g, - b < 0 (g, - b = —2) for the given direction
of I' = [130] (from left to right in the image of Fig. 2d) since sgn (4 - Bx J) sgn (w) = -1
aswellas —sgn (do - Bxl) = —1 (see (5a), (5b) respectively). The orientations of the vectors
mentioned above are also shown in stereographic projection in Fig. 7. Four of the twelve
vectors, viz. (1/2) [TT0], (1/2) {170, (1/2) [0T1], (1/2) [011], satisfy the requirement of g - b < 0
(see Ib, Fig. 8). Vectors (1/2) [101], (1/2) [101], (1/2) [T01], (1/2) [101], for which g- b =0,
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a b c d

Fig. 8. Schemes of three possibilities (rows I to III) of determining b by using of the contrast feature
analysis. In the first two ways (I and II), the Burgers vector is chosen from twelve vectors of (110>
type possible for b, which are in the stereographic projection shown as open circles (O). The size of
the symbols depends on the vector position with respect to the image plane increasing for vectors
running downwards. In the last method (III), both the eight vectors of {111) type () and the six
vectors of ¢100> type (r1) possible of e are considered in order to determine e unambiguously by
applying sgn (g - €) and the parity analysis. Diffraction vectors g, dislocation line / and its projection
on the image plane I’ are also shown as dark spots

are excluded from the contrast features. By examining the image shift in a further image
with g = [220] the possible b orientation is reduced to two vectors, viz. (1/2) [011] and
(1/2) [01T] (see Ic, Fig. 8) since two other vectors, viz. (1/2) [T10] and (1/2) [110], correspond
tog-b= —2and g b =0, respectively.

From the eight vectors of {111 type possible for e, which are the normals to the (111)
slip planes, two vectors, [T11] and [111] (see Ic, Fig. 8), can be chosen, which correspond
to both pairs of b = (1/2) [011], I = [132] and b = (1/2) [011], 7 = [132] ([132] and [132]
have the same projection of [T130] on the (001) plane). The dark halo contrast (DF image)
indicatesg - e = (g - Ix b) < 0. Therefore,e = [111]and, finally, 5 = (1/2) [01T] (Id, Fig. 8).

Contrary to Marukawa’s method this procedure enables us to determine vector b without
alarge inclination of the sample in the microscope during the contrast experiment. Moreover,
it can also be applied to the dislocation lying parallel to the foil surface.

The second way illustrated by row II in Fig. 8 is related to the reduction of the probable
b orientation by applying the g - = 0 method. If the projection of the b-axis on the image
plane is known from the invisibility criterion for one g, vector (see Ib, Fig. 8), b can further
be determined by the analysis of the contrast features requiring fewer images. For example,
Fig. 2a represents the weak image of dislocation B which corresponds to a vanishing contrast
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owing to gy - b = 0. The residual contrast is the result of (g, - b x J) & 0. Of this image four
possible b vectors, viz. (1/2) [011], (1/2) [0111, (1/2) [011], (1/2) [0TT], satisfy the requirement
of g-b = 0 (Ib, Fig. 8). Using the contrast features of the image in Fig. 3a (IIc, Fig. 8)
enables the unique b vector of (1/2)[017] to be concluded as shown above (I1d, Fig. 8).

4.5 Parity analysis

In the third way, the e vector defined by parity and sgn (g - €) analysis is used instead of
the direct b determination (see Table 3 and row III in Fig. 8).

In the particular case of g, L g, i.e. g; || ¥ where &' is the projection of the b vector on
the image plane and g, is the diffraction vector satisfying the invisibility criterion, the parity
can be directly related to the image shift and the black-and-white vector (see Table 3).
The relation of P to the [BxI] vector, viz. sgn(Bx/-g,) =sgn (Bx[-b)sgn (g, b)
= Psgn (g, - b), can easily be obtained by taking into account that sgn (4 - g,) = sgn (4 - b)
x sgn (g, - b) for g, and arbitrary 4 vectors. Thus, the black-and-white vector 4, is related
to P yielding

sgn(—4o-g:) = sgn (g, - b)sgn (Bx!-g)) = sgn’ (g, - b)sgn (Bx - b)
=sgn(Bxl-b) =P, (6)

and one can find a relation similar to the image shift A (see Table 3).

Bquation (6) holds good also if g, belongs to one of the two largest solid angles made
by I' and g,. It shows that the parity is connected unambiguously with both the contrast
properties (image shift, oscillations, etc.) and the position of the extra half plane with respect
to the normal B to the image plane. That means e points towards +B for P = +1,
conserving the FS/RH convention. Thus, the analysis of both the contrast features and the
parity enables us to unify the Burgers vector determination being independent of the
orientation of / and the coordinate system, respectively. Similar to this, using the halo
contrast enablessgn (g, - ¢) and, thus, the orientation of e in the image plane to be determined.

The examples of Figures 2a and 3a are also used to illustrate the above (see row III,
Fig. 8). Examining the halo contrast in the image of dislocation B in Fig. 3a reveals two
vectors, viz. [TT1] and [T11] (IIIb, Fig. 8), possible for e, which satisfy the requirement of
g e <0 and which can be chosen from the eight vectors of (111} type, which are the
crystallographically allowable vectors (IIla, Fig. 8). Four vectors, viz. [1T1], [T11], [T11],
[1TT], which correspond to g - e = 0, are excluded. Taking into account the dislocations
with a glide plane of (001) type, which can be a result of dislocation reaction, two vectors,
viz. [010] and [I00], can also be considered (see IIIb, Fig. 8) because those satisfy the
requirement mentioned above. The image shift in Fig. 3a indicates P = 1 since sgn (g, - 4)
= 1. Therefore, ¢ = [111] (Illc, Fig. 8).

Of the six vectors of {110} type lying in the (I11) slip plane, three vectors, viz. [110],
[10T], [OTT], correspond to e = [TT1]if #' = [130] (I = [132] see Illc, Fig. 8). The vector of
[0TT] only satisfies the requirement of g, - b = 0 for g, = [040] in Fig. 2a. Thus, b = (a/2)
x [0TT]if{ = [132] (seeI11d, Fig. 8 and Table 1). Dislocation A can be analysed analogously.

The algorithm of the parity analysis can therefore be summarized as follows. According
to the object crystallography several axes probable for an e vector can be concluded from
this. Then, analysing the contrast features (see Table 3) in an image with g, - b == 0 one
can define the dislocation parity P and, hence, vector e. By applying the invisibility criterion
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£o - b = 0 for one g, vector the unique vector b can finally be chosen from several vectors
lying in a slip plane with the normal e if the 7 direction is fixed. Two images only are often
sufficient to determine the parity and the Burgers vector of the dislocation.

4.6 Discussion

The main advantages of the method proposed lie in the choice of the spatial position of
the vector e to characterize the dislocation sign as well as in the use of the contrast analysis
with vector form parameters. Indeed, the theoretical consideration, or the model for image
simulation, always chooses the coordinate system in agreement with certain conventions
(see Section 2). In the experimental practice this can be done arbitrarily thus implying some
uncertainties in determining the b direction [4, 5]. In order to avoid them, e.g., in the
inside—outside contrast method the positive / direction was defined by fixing the positive
direction of the normal » to the dislocation loop [6]. In our method of considering straight
dislocations the parity is directly connected with the orientation of vector e and it is
independent of the choice of coordinate L On the other hand, the vector form of the
dependencies of contrast parameters on dislocation characteristics and diffraction conditions
is rather suitable for contrast analysis in the general case.

The modified analysis of Burgers vectors can be applied, e.g, to dislocations in
semiconductors where only parts of loops are visible so that the inside—outside technique
fails. The investigation of a lot of dislocations such as, e.g., A and B reveals that dislocations
having the same glide planes are created in deformation centres at the interface under
residual stresses during growth or postgrowth cooling. The nature of such deformation
centres was discussed elsewhere [17] and can be associated with the small Al,Oj, precipitates
in AlGaAs epilayers. Dislocation loops gliding from the centre to the surface grown break
into two segments which are almost parallel to the Burgers vector b. Therefore, most of
the threading dislocations observed in epilayers have a large screw component of b.
Dislocations A and B represent two segments of different dislocation loops starting from
the same deformation centre.

The results described above showing the generalization of the dislocation sign enable us
to simplify the conventional diffraction contrast analysis for arbitrary single dislocations.
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