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Diffraction contrast and lattice fringe images of small hexagonal dislocation loops are investigated by computer simulation
combining the diffraction contrast calculation with the Fourier formalism for considering the electron-optical imaging process
including aberrations. Simulated images are presented applying this method to investigate systematically the nature of a small
prismatic dislocation loop of Frank type inclined to the electron beam. In particular, the relations between the black-white
diffraction contrast oscillations and the lattice fringe distortions (including shifting, bending and termination) have been
studied in connection with the variations in the contrast of loops with the thickness of the foil, the depth of the defect in the

foil, the deviation from the Bragg reflection ¢ondition and the influence of image aberrations.

1. Introduction

In a previous paper [1] a method was described
combining the calculation of diffraction contrast
amplitudes with the Fourier transformation for-
malism for simulating bright- or dark-field diffrac-
tion contrasts and lattice fringe images of arbi-
trarily small crystal defects. In the present work
the method of ref. [1] is applied to simulate bright-
and dark-field images as well as lattice fringe
patterns of a small, inclined, hexagonally shaped,
prismatic dislocation loop to derive general rules
of the behavicur of lattice fringe contrast with
respect to the defect nature and the imaging
parameters. As mn ref. [2], the outward or inward
bendings of [mnges caused by the dislocation loop
no longer prove uneguivocally the defect to be of
interstitial or of vacancy type. Nevertheless, com-
prehensive systematic analysis of the fringe distor-
tions (shifting. bending and termination) with
respect to the behaviour of the black-white con-
trast osallation in bnght- and dark-field diffrac-
tion contrast should vield information on the local
defect structure.

For sufficiently small dislocation loops, com-

parable to small defect clusters and precipitates,
the black—white (BW) contrast method has been
shown to be useful for defect identification (analy-
sis of BW oscillations, cf.. e.g., refs. [3-5] and the
review [6]). This oscillation behaviour can be
studied in a very illustrative manner using com-
puter-simulated catalogues calculated on the basis
of the infinitesimal loop approximation [7], which
enables the results to be extended to finite diame-
ters when different additional effects are studied
separately. The shape of the BW contrast is mainly
determined by the long-range part of the elastic
distortion field, i.e., it depends solely on the effec-
tive strain field of the loop and the elastic moduli
of the anisotropic matrix [8].

The BW contrast method fails for very small
defects or if the specimen is so thin that anoma-
lous absorption is negligible. Appropriate extreme
defocusing (some pm) of the objective lens, how-
ever, allows one to transfer the phase information
into interpretable black—white contrasts [9]. In
this way the BW analysis is extended to cases of
vanishing diffraction contrast taking into account
the modified oscillation behaviour.

For loops of non-circular geometry the funda-
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mental contrast properties are, in principle, the
same as for the infinitesimal loop approximation.
The line of no contrast and the BW vector are less
influenced by the loop shape. However, the line of
no contrast, for instance, is only straight and
perpendicular to the reflection g if the reflecting
plane is a symmetry plane of the defect. Further-
more, non-circular shapes mainly influence the
central region of the loop image; here the associ-
ated characteristic contrast features are called fine
details. The fine details result from overlapping
contrasts of different parts of the central loop
region. These patterns are strongly influenced by
even weak mmage aberrations (defocus of some 10
nm) where the long-range BW behaviour does not
change. To avoid misinterpretations of the fine
details the entire image aberrations have 1o be
taken into consideration and analytical approxi-
mations can no longer be applied to the displace-
ment ficld of the defect [1].

The most important aim of the present paper,
however. is to show the relation between these fine
details in diffraction contrast images and the con-
trast features obtained from lattice fringe imaging
of dislocation loops, because the fringe distortions
are mainly determined by the central defect r=-
2ion. This allows a comprehensive systematc
analysis to yield information on the local defect
structure.

2. Method

The computer simulation of defocus diffraction
contrast as well as of lattice fringe images of

crystal defects has been carried out by the method
described in the previous paper [1], combining the
calculation of diffraction contrast amplitudes with
the Fourier transformation formalism.

2.1. Simulation procedure

The diffraction contrast amplitudes are calcu-
lated by solving the Howie—Whelan equations
using Runge-Kutta integration procedures or
Tholen’s matrix multiplication method. To mini-
mize the numerical effort an amplitude interpola-
tion procedure is applied in such a manner that
only about 20% of the image pixels are integrated
directly. The imaging process is described by
Fourier analysis and Fourier synthesis of the am-
plitudes related to the image pixels, considering
here the electron microscope aberrations on the
basis of the contrast transfer function with special
reference to the point-spread properties of the
microscope.

The application of these techniques to calculate
lattice fringe contrast near crystal defects is il-
lustrated in fig. 1 [1,10]. For a Ge specimen of
thickness =11 nm (34,. &, = extinction length)
bright-field (BF) and dark-field (DF) diffraction
contrasts are computed for a screw dislocation
having an inclination of 30° with respect to the
foil surfaces (b = 3[011]. b= Burgers vector). The
assumed incident beam direction is e = [110] and
the diffracuion vector is g = (111). For the compu-
tation of the lattice fringe contrast (LF) the inter-
feremce of the bright-field and dark-field ampli-
tudes was carmed out according to the relative

Fig. 1. Brght-field (BF), dark-field (QF) and lattice fringe (LF) images of an inclined screw dislocation in [011] direction.
Parameters: g = (111), » =§ [011), e=[110). w=0, r =&, /4 (£, of Ge); ¥=100kV, =4 =0(a—c); C,=1.4 mm, 4 =75 nm (d).
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phase shiflt exp(2nwig: R) with the coordinate R
normal to the optical axis of the microscope. The
marked subunits of the BF and DF were treated
by applying the interpolation procedure to the
amplitudes, The inset in the LF image shows the
associated calculated diffraction patiern. Confirm-
ing the g-b criterion (g-b=1) an additional,
terminated lattice fringe appears. If. furthermore,
the experimental contrasi transfer function 1s taken
into account (F=100 kV. C=14 mm. A=75
nm) the lattice fnnge contras: is modified. In the
case of this screw dislocspom. for instance, it is
not possible 10 localiee the termunated fringe, be-
cause ihe comtrass & Blerved due fo microscope
abematoss.

The s=memcal csltslations are supported by
the smabveral @ssempaions given in ref. [1], which
sliow e pimsacel explanation of the contrast
mechameens et the sifects of aberrations (cf. the
S of Ses 6 and 7). It should be men-
Semmesl ewe (has the analytical approximations of
== 1 cam Be compared with results of ref. [11],
e the Sifferent ways of approach. The damp-
wme smesope 15 included in the formalism of ref.
. om the analogy of the method developed in ref.
| The phase terms of the dispersive expansion
Zam Be related 1o the terms of expansion in deriva-
woms for explaining, e.g., the significance of con-
trast amplification and image shift. Furthermore,
| this way it is possible to distinguish the lattice
fringe artifacts obtained and discussed in ref. [11]
and simulated in ref. [1] for wedge-shaped crystals
from the effects of aggravating truncation at the
image edges.

2.2. Construction of the displacement field

For calculating the displacement field of the
hexagonal dislocation loop the angular dislocation
model of Yoffe is used in the form given in ref.
[12]. The angular dislocation describes analytically
two straight semi-infinite dislocation segments in
isotropic elastic continuum enclosing an arbitrary
angle and having a discontinuity of the displace-
ments of magnitude b (Burgers vector) between
them.

Six angular dislocations are combined in such a
way that they form a hexagonal loop by annihila-

tion of the dislocation segments outside the loop
(cf., e.g., refs. [13,14]). This construction guaran-
tees that the discontinuities describe a stacking
fault inside the loop if & is not a perfect lattice
vector. Furthermore, b-n smaller or greater than
zero characterizes the vacancy or interstitial type
of the loop, respectively, if n is the loop normal
according to the FS/RH rule for the dislocation
line directions given. The hexagonal loop is an
illustrative example of defects containing more
structural fine details than, e.g., the circular loop
or the infinitesimal loop approximation. Fer the
model calculations prismatic loops of Frank type
are chosen, where b= + {[111] is parallel to the
loop normal n = (111) describing interstitial type
defects. The loop diameter is d=2.3 nm, ie.
approximately 0.15§, for the extinction length
(& ) and absorption parameters (§;) of the Au
specimen used here. The incident beam direction
is e=[110] and the excited Bragg reflections are
g=(111) for all figures except fig. 6 where g =
(002). Because of the loop inclination of about 35°
with respect to the foil surfaces the depth position
parameter /; indicates the position of the loop
centre. The upper and lower parts of the loop are
in depth positions which create overlapping depth
effects.

3. Results

The procedure -outlined above of simulating
electron micrographs is applied to investigate con-
trast features caused by small dislocation loops
characterized in section 2.2.

In figs. 2, 3 and 4 the bright-field (BF), dark-
field (DF) and lattice fringe (LF) contrasts of
hexagonal dislocation loops in Au are systemati-
cally studied. In order to discriminate the speci-
men signal itself of the final images from the
aberrational influence of the electron microscope,
perfect contrast transfer (in-focus A =0, aberra-
tion-free C, = 0) is assumed for the three imaging
modes used. For an exact Bragg orientation (wy,
=0) the BF, DF, and LF patterns are shown in
tables, where foil thickness ¢ and depth position 7,
of the loop are the significant specimen parame-
ters.
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BRIGHT FIELD

HEXAGONAL LOOP ,2nm
g=(111), blIn=(111), e=(110), w=0,C.=A=0

Fig. 2. Calculated bright-field images Iy of a hexagonal dislocation loop. Parameters: Foil thickness 1/, (horizontal). depth
position of defect t, /&, (vertical).
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DARK FIELD

HEXAGONAL LOOP ,2nm
g=(111), blla=(i11), e=(110), w=0, C,=A=0 —

Fig. 3. Calculated dark-field images 7,1, of a hexagonal dislocation loop. Parameters: foil thickness 1 /£ (horizontal), depth posi s
of defect 1y /£, (vertical).
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LATTICE FRINGES

HEXAGONAL LOOP ,2nm,
g=1171), blIn=(171), e=(110), w=0. C.=A=0

Fig. 4. Caleulated (111) lattice fringe contrast of a hexagonal dislecation loop, Parameters: foil thickness ¢ /%, (horizontal),
position of defect 1, /&, (vertical).
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trasts arise due to the strains caused by the defects
in the surrounding matrix under dynamical two-
beam conditions [3-7]. They can be described by
a black—white vector / pointing from the centre of
the black lobe to that of the white one. The sign of
g - I, which is the product of the BW vector I and
the reflection g excited, oscillates due to the depth
1, of the defect with a §_/2 periodicity except in a
surface layer £, /4 which is determined by relaxa-
tion effects. The angle between g and [/ is inde-
pendent of the depth ¢, and therefore the direc-
tion of I denotes the main displacement direction
which is approximately parallel to the Burgers
vector projection for prismatic loops. For a fixed

- Bright-field (BF), dark-field (DF) and lattice fringe (LF) images of a hexagonal dislocation loop with deviation w from the
Bragg condition (tilt series). Parameters: g = (111), b= %[111], e=[110], r= L0, 1y =05¢,: C,=4=0.
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Fig. 6. Defocus (4) bright-field contrast of a small hexagonal loop for different C, of the objective lens. Parameters: g = (002),
b= {111}, e =[110], t = 2§, 1,=0.125¢,. w=0; ¥ =100 kV.

depth 7, the sign of the product g-/ depends on
the interstitial or vacancy type of the loop consid-
ered (similar to a dilation or compression centre,
respectively).

Excluding the regions close to the surface (1, <
§./4, 1 — 1ty <§&,./4) the existing depth periodicity
can be characterized by the depth layers L, of
alternating BW vectors:

§/4+(n—1)¢,/2<t,<8,/4+nt, /2

(assuming a perfect contrast transfer) [4-7]. Be-
cause of sign(g-/)= +1 in L,, using our conven-

tion, the interstitial loop character is proved in the
simulated BF and DF images. Analogous to the
thickness fringes in wedge-shaped crystals the laye
periodicity L, is overlaid with a periodicity of the
diffraction contrast depending on the specimen
thickness r; the contrast for BF is maximum at
t=(2m+1)§,/2 and for DF at r=mé,.

The intervals considered in figs. 2 and 3 of the
crystal thickness 7[£,, 1.5£,] (horizontal) and
the depth of the defect ¢,[0, ] (vertical), are thus
representative of all contrast features observablk
due to the periodicity of the BF and DF i
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Fig. 7. Through-focus series (1) of lsmies Ssmges of & Sesagons] dislocation loop. Parameters: g = (111), b
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r=11258 £ =BENE_wall F=M0kV, C=14mm(C =4 =0, for comparison).

diffraction contr=s ==t sspe=s 8 f and [
Accordingly, the speomes Sscksesces chosen
around £, are appespmate i Sspenments as well
as for the commms asloslases 2t higher spatial
resolutos sopivmmg e il approximation.
The arranssssesss o8 calcalisted images in figs. 2
and 3 sooammses Eee Showe BW contrast be-
havions & B s DF e==aging. However, due to
the sngic of 35 emsern the incident beam direc-
s @ e e et normal # of the supposed
exanndied g, Wi oscillation behaviour is over-
bgpet Sems Thewwiore, .2, the expected minima
o BF & = = = DF diffraction contrast at the
i el &, = £, /4 +nf, /2, which are known
Suse e oo meesimal loop approximation, are not
e were (overlapping exceeds the minimum
s of £, = £./10 proposed in ref. [6]).

"= soduion to the periodic behaviour discussed,
. =F znd DF diffraction contrasts in figs. 2 and
© clearly show that for hexagonal loops in the
woper half of the specimen (£, <1/2) the
nlzck-white vectors of the contrast lobes have the
same sign in BF and DF patterns. If the crystal
defect is below the middle of the foil the contrast
vectors of BF and DF become opposite; and the
image intensities are almost complementary. In
the (1-#,) table line 1, =1¢/2 is marked: for this
special depth position of the hexagonal loop the
bright-field contrast patterns are symmetrical.

Compared to the background intensity, the
central contrast region (inside the geometrical pro-
jection of the loop) of associated BF and DF
patterns is nearly complementary. For some
parameter combinations (e.g. t=1.0§, 7,=

0.75¢,) the fine structure represents the shape of
the inclined hexagon, but a general classification
comparable to the BW periodicities is not obvious.
The phase distributions associated, however, will
be revealed in the LF patterns.

3.2. Lattice fringes

While lattice fringe patterns of undistorted
crystals show only black—white fringes with
sinusoidal intensity profile, crystal defects cause
modifications [1]. Remarkable effects in the fringe
structure require significant variations of the phase
difference between BF and DF amplitudes in a
small area.

The resulting fine structure of the lattice fringes
is detectable sufficiently rich in contrast if these
phase discontinuities arise for comparable intensi-
ties in BF and DF contrasts. The contrast features
in the lattice fringe images of the simulated hexag-
onal dislocation loops (cf. figs. 2, 3 and 4) il-
lustrate these general considerations.

According to the crystal defect for all LF pat-
terns, represented in fig. 4, a Burgers circuit around
the complete loop does not provide any additional
lattice plane in the surrounding matrix. The resid-
ual diffraction contrast of the crystal defect de-
pends on the depth position of the loop. For the
interval 7, <§£,/2, the loop region appears bright
compared to the surrounding. Approaching ¢, =
t/2 the inner area of the defect turns dark. This
effect is enhanced with increasing erystal thick-
ness. If the loop lies below /2 the residual con-
trast fades. This behaviour is roughly correlated
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with the fact that BF and DF contrasts have the
same sign (BW vector) for 7, < £,/2 and become
opposite for ¢,>§,/2. The direct fringe effects,
which are controlled by the phase difference of BF
and DF amplitudes, require comparable intensi-
ties in the corresponding image positions [1]. This
condition 1s almost fulfilled for r= 1.125¢, and
= 1.25§g. on the one hand, and for 7, =¢/2, on
the other hand,

There are three types of lattice contrast fea-
tures:

(1) Bending of the LF at the loop, mostly accom-
panied by dark shadows (e.g. near the top surface
1, =0.25¢,).

(1) Terminated fringes at the dislocation lines of
the loops, whereby at greater distance outside the
loop the terminations annihilate, confirming the
Burgers circuit for closed loops (e.g. near the
marked line 7, =1/2).

(i11) Displacement (shift) of the fringe system in-
side the loop (eg. = 10¢,, 1= 0.75¢,; 1=
1.25¢,, 1,=0.875¢,).

Due to the loop inclination the defect regions
vary so that significant effects occur in the associ-
ated actual depth position of the loop segments.
For other parameter configurations (¢, 7,) more or
less typical combinations of these contrast types
are observable. If the defect lies near the bottom
surface the lattice fringe pattern is almost undis-
turbed (opposite sign of BW vectors in BF and
DF). A closer location of the loop to the top (e.g.
1o < 0.125¢,) or the bottom (1, = t) surface of the
crystal does not reveal any new systematic results,
which holds also if the surface relaxation is
included approximately.

3.3. Influence of specimen tilt

In the tables of figs. 2, 3 and 4 the exact Bragg
orientation was assumed for all contrast investiga-
tions with varying specimen thickness and defect
position. To study the influence of specimen tilt in
fig. 5 the bright-field (BF), dark-field (DF) and
lattice fringe (LF) contrasts of the hexagonal loop
are displayed for varying excitation w of the dif-
fraction vector g = (111). This phenomenon, which
has been investigated for a series of parameter
combinations (z, #,), is demonstrated for the
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specimen thickness t=§, and the depth of the
loop 7,=0.5¢, (see figs. 2-4). Compared to the
diversity of thé contrast features in figs. 2-4 a
variation of the deviation parameter w around the
exact Bragg orientation (w=0) has a relatively
small effect on the images, especially for 0 g w <
0.5 (dynamical excitation). The characteristics of
the diffraction contrast patterns, e.g. the sign of
the black-white vector, remain unchanged. Fur-
thermore, the intensity distribution inside the loop
is almost unmodified for w > 0. However, in the
BF as well as in the DF pattern shape and exten-
sion of the contrast lobes depend on the specime
tilt.

In the bottom row of fig. 5. LF images
shown, neglecting the influence of the microscs
aberrations (C,=0, A=0). Contrary to the g
terns of fig. 4, here the lattice fringe distors
with comparable structures always occur in
same loop position. The visibility of the hes
well as of terminated fringes is best for dynas
excitation, where a dark residual diffractios
trast is observable. For an increasing
(|w]|>05) from the Bragg orientation
specimen the influence of the crystal defect
LF contrast is reduced and vanishes.

3.4. Influence of microscope aberrations

In addition to the defect and specimes
ters the microscopical imaging process =
the aberrations influences the final imags
The degree of this effect is determined *
and spatial spectrum of the defect to &
and by the imaging mode (diffractic
lattice fringes). i

The investigation of the microscope
is based on the analytical and nume
given in ref. [1], whereby the sim
imaging process is applied to brigh
tion contrast in fig. 6 and to lattice
in fig. 7. As usual, the electron-opts
of the electron microscope are sums
contrast transfer function (CTE}
bright-field contrast of a hexagoma'’
located at 7,=15 nm (loop cen
surface of a foil 7=23 nm thick
detail. The exactly excited diffss




g =(002) and the incident beam direction is e =
[110]. The loop parameters are b = 1[111] (Burgers
vector), n=[111] (loop normal), and ¢=3 nm
(loop diameter). The influence of the electron-
optical contrast transfer, characterized by the most
significant parameters defocus A and spherical
sberration C, is simulated for an accelerating
woliage of 100 kV, In the table, the lens parameter
£ s varied from left to right from C = 0 (perfect
el over 1.4 to 5.1 mm, and the d=focus from
e %e Sottom from A = 0 over 50 to 100 a=m. This
2 sdeal diffraction contrast (C. =0, A=
emEracteristics should be the standasd for
smation of appropriate imaging comds
hsas of the contrast transfer functsom
8 minimum additional phase shafts
SRR o 2 wide range of spatial frecuss-
S S epaamam imaging conditions fos
=t e € =14 mm and A= 100 man
| =51 =m m fg. 6. Compared with the oghesr
M. heve the image modifications as well as e
misence of Fresnel fringes are minimssed for
Wiese parameter combinations (A, C ) The cfiecs
W image aberrations on the BF diffraction con-
st (cf. numerical results of fig 6) cam aiso e
" Escussed by analytical approximanoss gwes =
#=f [1]. Furthermore, these considerations can be
gxiended to DF imaging and cases of Sited inc-
@ent beam. The modifications of the BF micnsiny

ame- &y the CTF can clearly be sndersiond as a local
iding pesiodic modulation of the &Effraction contrast
trast, seelf (amplification and shift). This is visible espe-

smally in positions having strong intensity or phase
asscontinuities. The distances and form of the

° size
aged '

trast, modulation correspond to the CTF oscillations.
The experimental observation of these fringe
tions structures requires a sufficient coherence of the
thods slectron wave, i.e., a weak damping envelope of
f the the CTF. Because of the negligible influence of the
ffrac- spherical angles of BF imaging the defocus term is
aging “ominant, which results in very similar effects for
1eters @8l parameter combinations. The column for C, =0
n the 2 =10) in fig. 6 can be interpreted in terms of
5 the Fresnel diffraction.
ich is For supplementing the systematic study of the
v the smehi-field, dark-field and lattice fringe contrasts

ed in
or 1s

of the hexagonal loop, the influence of the micro-
scopecal contrast transfer on the lattice fringe pat-
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tern is pointed out for one selected example (foil
thickness 7 =1.125¢_, depth position of the loop
to=0.625¢,). The left part of fig. 7 (compare also
fig. 5) shows the ideal two-beam interference pat-
tern. The resulting lattice fringe amplitudes — a
perfect electron microscope (C, =0, A = () would
assumedly register their intensity — are the input
for the through-focus series (V=100 kV, C.=1.4
mm, 4=0, 51 and 8 nm, « =0.017 rad). The
influence of the contrast transfer function em-
phasizes the residual diffraction contrast of the
loop. Characteristic distortions of the lattice fringes
remain detectable also for realistic imaging condi-
wons. The positions of the lattice fringe effects,
ez bemdings and terminated fringes, are pointed
o=t by dark blumred contrast details for all de-
focss valees. For 4 =0 and a defocus of A=751
= = paroaceler, Fresnel inngss appear, whereas
for the Scherer focus (A=286 nm) the relative
Siose rofatsoms are memimgen over 2 wide band of
spatsl Eegueacees. After all the microscopical
sherrasons sov= o camse 2 shight brightening of
the serTosnding of the orvstal defect.

4 Di =

The associated BF, DF and LF images of figs.
2. 3 and 4, respectively, demonstrate a characteris-
tic coincidence of the contrast features as shown
above. This coincidence can be explained using
egs. (8a)—(8c) of ref. [1], which for the two-beam
situation of the present calculations can be written

12
Iip=Iyp+ Ine + A Iyelpe) ”

Xcos(2mg - R+ 8¢). (1)

Here I4p, Ipp and I are the intensities of the
BF, DF and LF images, respectively; g is the
reciprocal lattice vector of the excited reflexion;
and R describes the image pixel coordinates. The
term 8¢ denotes the phase difference between the
transmitted (000) and diffracted (g) plane waves.

As is known (see ¢.g. appendix of ref. [1]), Iz
and g are complementary (fgr + Ing = 1), if the
absorption can be neglected. A non-vanishing ab-
sorption causes a local variation of the back-
ground intensity (fgr + Ipe) in the LF pattern,
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which decreases with increasing depth position 1,
of the defect. The visibility of the fringes is char-
acterized by the product ([3e/pg)'/? of the BF
and DF intensities, whereby the thickness oscilla-
tions of the diffraction contrast determine the
general fringe structure. The depth periodicity and
the fine structure of the BW contrast of both the
BF and DF amplitudes describe the visibility of
lattice fringes in the surrounding of the defect
projection and the central region contrast.

The three types of fringe modifications dis-
cussed in section 3.2 (bending. termination, dis-
placement) are due to the phase difference 8¢,
which therefore is the most significant term of eq.
(1) in the present investigation. All examples
calculated show that the outward or the inward
bending of fringes as well as their termination and
their shift are not unequivocally determined by
the defect nature, because the phase shift strongly
depends, for instance. on the depth position of the
defect. In all parts of fig. 4 the location of the
fringe distortions in the hexagonal loop region,
however, seems to be characterized by the defect
geometry. The comparison of the diffraction con-
trast calculations (figs. 2 and 3) with the simulated
lattice fringe images (fig. 4) and with the sche-
matic drawing of the loop projection (see fig. 8)
proves this contrast behaviour. The strongest fringe
distortions, which are due to the termination of
fringes, are located at the inclined loop segments,
whereas the strongest shifting and bending effects
occur along the segments parallel to the surface.
This confirms the facts that the considerable phase
changes appear at the dislocation lines and that
the phase ambiguity of 27 demands a dislocation
segment of sufficient depth variation. If the angle
between the projection of the dislocation segment
and the fringe direction is large enough the phase
behaviour can be correlated directly with the fringe
distortions. Thus, in addition to the diffraction
contrast analysis information is provided on the
local defect structure,

In the broader sense, the above discussion even
holds if microscope aberrations are included, as
demonstrated in. fig. 6 for diffraction contrast and
in fig. 7 for lattice fringe imaging. For both the
techniques the consideration of the imaging pro-
cess modifies the contrast patterns of the simu-

2nm

Fig. 8. Scheme of the dislocation loop projected inte
plane; g= (111), bljn=(111), n,=n—(n-e)-e =
= depth position of the loop centre, § = depth inse

loop segments.

lated figs. 6 and 7 on the analogy of the
approximation in ref. [1] (e.g. blurring. 2=
tion, shift, Fresnel fringes). The local fide
the main features of the lattice distors
conserved even for the LF contrast, whic
tive to through-focusing.
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