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Computes wmlstons of defocos diffraction contrast and lattice fringe
W e S of sleciron micrographs of small lattice defects to be
s e secmsem optical imaging process is included in addition to
W et St siecron beam and crystal. Multi-slice caleulations of
St emeiisen skowen meToscope images are applied to randomly
Eatet Sl Smecteres 1o evasluate the possibilities and limitations of
s mmmsuee ae—westos An extension of the iteration procedure is
Pmemes e S potcs! potentizl concepl to eigenvalue system of
Wl Semmmeee AU three examples given are possibilities of
ety e splicaitlies of apocoumations inherent in theoretical descrip-
2o gl lmreee Bewmn-mueee mizraction.
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= mmmemsssion sfectron microscopy the nature of small crys-
o ﬁ:ﬁh:s 2= be analysed by the well-established
=Sl oF S cties contrast imaging. Additional support-
-ruﬁrlﬁ'_‘c-* Zx= S oblaimed from lattice fringe images.
Wi e smmetcssce of high resolution electron micro-
soopw (SEEN. m matenal science invesligations consists in
05 sesalme geseer prosading direct and detailed information
on S e sesesacs! variability at the atomic level.

Thueus® Se Sewesscal image calculation always tends to
SSRSEEE wmliesd mules of interpretation, in the majority of
cases & @e=s =l pRemomenological analysis of electron
Fecraeagis = mef poseible, and the unambiguous deter-
I oF e Sefecr siructure with respect to the contrast
obcamed ssguess W8e sophication of image simulation and
maacie B

The muee = madelied by calculating the electron beam-
SpeCTe aremseee swn2 a theoretical structure model. and
By salsenuesty comsidering the electron optical process itself
mciadime W= sSesmations of the microscope. An extensive
Semier o @fieeas computer programs have been developed
o pesloem e compemsiions which are all based on the
dymasmal Sewes of ciectzon diffraction and Abbe’s theory of
imaes lemeiom. sescectasly. As to the calculation of dif-
fractem coarmess smages mostiv the column approximation is
Sppled sl S cewsled first-order differential equation
Sysiemn Sae W B0 pusne or Bloch wave expansion of electron
wave oo = el [i]

e BREM mmaes contrast is computed using one of the
caiferens Ml Rechmegues: their applicability, advan-
taees and amsaleed proflems are discussed in [2]. The dif-
ferent Sppeomammstions. ¢ 2. penodic continuation or column
Sppromsmasen. pescmenclogical description of absorption
and meliester scatierme Sewic nember of diffracted beams and

mmage semolsme B the appbcability of the interpretation
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techniques. In the following three of them are considered in
detail.

2. Defocus diffraction contrast and lattice fringe imaging

Difficulties in applying the above arise, for instance. if extended
defects are to be investigated as the column approximation
limits the resolvable fine details and the periodic continuation
inherent in multi-slice techniques leads to an overlay effect.
For sufficiently thin crystals. however, the column approxi-
mation is valid. enabling the combination of the calculation
of diffraction contrast amplitudes and of the imaging process
in the microscope [3] to study defocussed diffraction contrast
and lattice fringe images. In [4] this technique is applied to
investigate systematically the nature of small prismatic
hexagonal dislocation loops of Frank type inclined to the
electron beam. Similar to these results, Fig. | shows the
calculated bright-field, dark-field and lattice fringe contrasts
of a spherical precipitate in isotropic materials. The thickness
interval of 1.0 £ 1/, € 1.5 (, extinction length) and the
depth positions of 0.125 < ¢,/¢, < 1.25 considered are
representative for all contrast features due to the periodicity
of the diffraction contrast. The symmetry of the precipitate
that is higher than other defect configurations ensures the
general classification of the contrast phenomena. The imaging
parameters are given in the inset: diffraction vector g. incident
beam direction e. excitation parameter w, effective constraint
strain &. radius of precipitate R,. spherical aberration C,, and
defocus A.

The comparison of the associated micrographs enables the
analysis of the lattice fringe distortions (bending, shift.
termination) in terms of the phase difference between trans-
mitted and difiracted beams. But. because of the depth-
thickness periodicity, the lattice fringe distortions, especially
the outward or inward bendings. no longer prove unequivo-
cally the defect nature. Furthermore, the contrast is sensitively
influenced by through-focussing and by dynamical excitation
conditions. Under fixed diffraction and imaging conditions.
however, the phase difference and therefore the fine details of
the fringe distortions are directly related to the defect struc-
ture assumed. In Fig. 2 the dependence is investigated of
bright-field, durk-field and lattice fringe contrasts of a spheri-
cal precipitate for 1 = 1.125¢, and 1, = 0.125¢, of Fig. 1.
relative to the radius R, assumed for the homogeneous
region of the strain centre. For Ry = 0 the spherical precipi-
tate acts as an infinitesimal small point defect singularity
with a strength given by the constrained strain & and the
radius R,. whereas for R; = 1 the complele precipitateis free
of strains due to homogeneity but with an unchanged far
field. The analysis of the phase-influencing behaviour of
lattice defects should therefore facilitate defect siructurs
investigations [5].
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Fig. 1. Calculated bright-field I, dark-field /,,, and (111)-lattice fringe contrast of a spherical precipitate a5 a function of the foil thickness 1/, and the

depth position 1, /¢, of the defect centre.

3. High-resolution imaging of non-crystalline materials

The application of HREM imaging techniques to non-
crystalline materials mainly implies the projection-problem
of structures with long-range disorder. Using the multi-slice
technique and sufficiently extended supercells for simple
amorphized structure models enables the possibilities and
limitations of local HREM structure interpretation to be
evaluated [6].

Figure 3 shows for example contrast calculations of a
sandwich structure consisting of 2 x 2-(110)-silicon super-
cells (denoted by a) forming the crystalline matrix which is
embedded in a different numbers of amorphous slices (types
b and c). For slices of type b amorphized cells are applied
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Fig. 2. Bright-field (BF), Dark-field (DF), and Lattice-fringe (LF) images of
a spherical precipitate for different radius R; of the homogeneous strain
centre. g = (111), e = (110), + = L.125¢,, 1, = 0.1258,, e =2, Ry =
005¢,:C, = A =0,
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with different initial random conditions but uniformly dis-
tributed disturbances of the atoms of maximum 0.07 nm,
whereas for slices of type ¢ a dense random packing of hard
spheres is used having a first-order neighbour distance of
0.18nm. In Figs 3(a) to 3(d) the number of amorphous
surface layers rises from two (1b/8a/1b) to eight (4b/2a/4b),
and the contrast of the crystalline matrix is increasingly
disturbed. This holds for both imaging conditions of A =
— 8.7nm (upper row), where the crystal structure is preferred
using the aberration-free imaging of the matrix, and for
A = 50nm (bottom row) with lattice fringe-like contrast,
where the random disturbances near the Scherzer focus can
better be detected. Fig. 4 shows two defocus series (A = —
— 8.7, 50, 100 nm) for a small di-vacancy cluster in silicon. In
the upper row only perfect crystalline silicon surrounds the
di-vacancy, whereas in the bottom row two amorphized sili-
con slices are additionally assumed on both surfaces. The
slices containing the point defect (denoted by v) are charac-
terized by the potential shown in the insert. For both cases
of aberration free focus for the matrix (A = —8.7nm)
structure-like images of the crystal are obtained and the
position of the cluster is weakly marked. For the virtual
lattice fringe-like contrast near the Scherzer focus (A =
50nm) and for higher underfocus the contrast of the point
defect cluster is suppressed more or less due to the contrast
speckles of the amorphous surface layers.

Under dark-field imaging conditions local crystal defects
markedly appear in the contrast; especially the 3-beam mode
(1T1), (1TT), (220) has proved to be experimentally advan-
tageous for imaging di-vacancies in (110) silicon layers.
Figure 5 shows simulated HREM-micrographs (bottom row)
of a 10-slice model under these 3-beam dark-field conditions.
The projected potential of the di-vacancy slice is given in the
upper row; three di-vacancy slices are surrounded by a per-
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Fig. 3. HREM-simulation of amorphous-crystalline sandwich models (A in
nm, V = 100kV, C, = 0.7mm). Slices: a = 2 x 2-(110)-Si cell, b =
amorphized a-type (max 0.07nm), ¢ = dense random packing of hard
spheres.

fect silicon matrix and one amorphous layer at each surface.

_The constrained strain & describes the misfit of a coherent

precipitate in the approximation of a point defect singularity
characterizing the relaxation of the neighbour atoms around
the di-vacancy (¢ < 0 compression, ¢ > 0 dilation). The
comparison with experiments yields better results for com-
pression centres, and the contrast is only weakly influenced
by changing the imaging conditions or applying the surface
layers.

Figure 6(a) presents HREM-simulations of a crystalline
embryo in an emorphous specimen (top) as well as contrast
phenomena of an amorphous microregion in a crystalline
matrix (bottom). The models are generated using 4 x 4-
(110)-silicon supercells, where the cut-off radius of the sphere
discriminating disturbed atoms from undisturbed ones is
0.75 nm. The spherical microregion is placed at 4 inner defect
slices in a silicon specimen of 1 = 3.8 nm thickness. Accord-
ing to experimental experience the 100kV calculations also
show that disordered microregions of about 100 atoms may
be detected in the vicinity of Scherzer focus even for medium
resolution and coherence (z = 3.3nm™', § = 5nm) con-
sidered here. Here amorphous inclusions are imaged with the
improved contrast slightly below the Scherzer focus, whereas
crystalline embryos are clearly visible slightly above the
Scherzer focus.

The experimental micrograph in Fig. 6(b), a HREM cross-
sectional image of the interface region of a buried amorphous
layer after As®-implantation into ¢100)-silicon, contains
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Fig. 4. Simulated HREM defocus series (A in nm) of sandwich systems with
di-vacancy slices (v), perfect (a) and amorphized (b) 2 x 2-(110)-Si cells:
insert: projected potential of a di-vacancy slice: ¥ = 100kV, C, = 0.7mm,
= 750m"', 6 = Inm.
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Fig. 5. (110)-silicon tilted 3-beam dark-field images (100 kV) of di-vacancies
with relaxation approximated by a spherical precipitate of the misfit ¢. Slice
sequence: 1b/3a/3v/2a/lb,a = 2 x 2-(110)-Si cell, b = amorphized a-type
slice, v = di-vacancy slice (projected potential of v-slice in the upper row).

ordered regions within the speckled contrast of amorphized
silicon, and differently extended amorphized structures rela-
tive to the original crystalline silicon.

4. Inelastically scattered electrons

The Hamiltonian of the Schrédinger equation for a fast
electron of total energy E interacting with a crystal can be
constructed using H, = —h[2mA,, H, = H. (g) and H, =
H(r. g) for the free electron, for the crystal and for the
interaction between them, respectively. The assumption that
the eigenstates a,(¢) with energy &, of H. are known,
allows the expansion of the total wave function U(r, g) =
Z, a,(g) Y, (r) in terms of the crystal eigenstates, where i, and
Y, describe the elastic and inelastic scattering, respectively. It
follows [7, 8]

(Ar =+ ki = Hnn) WH = H

nm

2

m#n
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Fig. 6. HREM contrast of disordered regions in Silicon: (a) Simulation of
disordered spheres (R = 0.75nm) near Scherzer focus (A in nm): crystal in
amorphous matrix (lop), amorphous in crystal matrix (bottom): V' = 100kV,
1 = 3.8nm: (b) HREM cross-sectional image of the interface region of a
buried amorphous layer after As*-implantation at room temperature (E =
130keV, D = 10%¢m™) into (100)-Silicon ( experiment: P. Werner and
H. Bartsch).
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with the abbreviations &, = 2m/W(E — ¢,) and H,, =
2m/h* {a,|H|a,>. The diagonal matrix elements can be
approximated by H,,(r) = Hy(r) = —V(r) = —Z, V, exp
(—2migr), where 2m/[#* V(r) is the potential energy, i.e. V(r) is
the potential usually employed, and V, are the structure
amplitudes. A further assumption is usually made, the inelastic
waves are considered to be small compared with the elastic
one so that the above equation system can be solved by a
formal integration for » > 0 which yields

Vo = [ Gu(r V) H () 2)

Here the Greenian G, as a solution of (A, + k! — H,,)
G,(r.r") = o(r — ¥) in the simplest form describes outgoing
spherical waves; in [7] the Greenian is constructed of Bloch
waves characterizing the crystal. In [8] an absorption corrected
Greenian is applied using a special iteration procedure to
improve the accuracy of the state vectors by higher-order
terms of multiple scattering. For the elastic wave then follows
the eigenvalue system

(Ar a }\é B Hl;ﬂ) l‘{/U =0

with the so called optical potential H;,.

An extension of the iteration procedure can be realized
assuming that H,, < H,, holds but without supposing that
inelastic scattering is weak. Since the formal integration of
the initial differential equations (2) yields an equivalent
system of integral equations each inelastic state s, can be
treated similar to the elastic one i, in [8]. It follows an
eigenvalue system

(Ar + kr:( T Hr;n) ’ﬁn = 0 (4)

for each state ¥, with an associated optical potential H,.
Using an approximation analogous to [8] the absorption
corrected Greenian contains A, instead of H,, and the matrix
elements can be written

H::m Hnm i Z Hnn’G.'an 3+ Z Hnl-'G!H-'J'G.‘ H,w iy L
f= mn I=m
i mn

(3)

(5)

Consequently, the integral equations (2) are reduced to initial
value conditions. Some difficulties (convergence, direction of
k,) can be avoided by solving the complete eigenvalue
systems (4) including Greenian of outgoing and incoming
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waves as well as backscattered Bloch-waves [9]. The advan-
tage of this approximation consists in the equivalence of all
the eigenvalue systems for constructing the Greenian as well
as the different inelastic state vectors.

5. Conclusions

The combination of the calculations of diffraction contrast
amplitudes and of the imaging process in the microscope
enables the simulation of diffraction contrast and lattice
fringe images for studying details of electron micrographs of
extended defects. A second way of including three-dimensional
distortions is given by using extended supercells in “multi-
slice™ calculations. It is obvious that the shift, bending and
termination of fringe systems in the micrographs are deter-
mined by the phase differences of the diffracted beams due to
the crystal defects. Furthermore, the projection effect is the
factor which most strongly limits the resolution in imaging
distorted structures of long-range disorder. Finally, an exten-
sion of the iteration procedure is proposed to apply the
optical potential concepl to eigenvalue systems of inelasti- ~
cally scattered electrons. This offers the possibility to treat—
inelastically scattered electrons in analogy to the elastic ones.
All three examples given are possibilities of extending the
applicability of approximations inherent in theoretical
descriptions of electron beam-matter interaction.
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