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Object data can directly be retrieved from the electron microscope exit wave function
without using trial-and-error iterative matching [1, 2]. Such a retrieval of local data, e.g.
thickness, orientation and potential, as a basis of a general object reconstruction, can be
gained by linearizing the scattering problem and constructing regularized and generalized in-
verse matrices. However, as pointed out in different previous analyses of the stability of the
retrieval procedure (cf. the summaries in [4, 5]) it requires the knowledge of the confidence
region, the conditions for stability, and the restrictions due to modeling errors.

The retrieving procedure may again be summarized in short (see Fig. 1): Starting e.g. from
a hologram, all reflections are separately reconstructed yielding the moduli (A) and phases (P)
of the set of plane waves ®€XP at the exit surface. Exit waves @th are calculated using the
dynamical scattering matrix M for an a priori model characterized by the number of beams
and the scattering potential, and by assuming a suitable trial average beam orientation (Ko,
Kyo) predetermined by the experiment. With the sample thickness tg as a free parameter, a
perturbation approximation yields both the moduli and phases of the plane wave amplitudes
as linear functions of the object thickness t and orientation (K. K,). The analytic form of the

equations enable the inverse solution [t.K..K,, . J=EMiny-(@eXP-0th), thus yielding directly
for each image pixel (i,j) the local thickness tij and local beam orientation (KX,K).)jj.

The ill-posedness of the inverse problem (overdetermination with respect to the unknowns,
underdetermination if noise is included) needs to generalize and regularize the inverse matrix
Minvz(MTC]M+*{C2)‘]MT, which is equivalent to a least square (maximum-likelihood)

minimization Ilq)exP—(Dthll-wﬂQ]I:Min. The resulting solution is now well-posed but ill-con-
ditioned, which may be controlled and optimized by the regularization parameter ¥ and the
constraint £2, i.e. pixel smoothing via C;». Figure 2 demonstrates the smoothing of the regu-
larized inverse solution as a function of the regularization parameter y. The retrieval error &
(deviation of t and K over all pixel) has a minimum with ¥y for the best fit of test data, the
noise increase for smaller ¥, however, depending on pixel smoothing, and modelling errors
occur for larger . Figure 3 shows the confidence behavior (overall error € in Fig. 3a) and the
retrieval of t and (K.K,), cf. Fig. 3b, c, resp., for simulated test data as a function of the steps
in iteratively enhancing the a priori start values (Kxo, Kyo). If the first start data are within a
certain convergence region (cf. curves i for different pixel smoothing C, ), the correct solu-
tion 18 always found with high precision, whereas out of the region (cf. curves ii) the retrieval
remains instable.
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Figure 1 Retrieval of the local object thick-
ness t(i,j) and bending K(i,j) starting with sin-
gle reflections of experimentally recon-
structed exit waves of a Au grain boundary.
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Figure 2 Influence of the regularization pa-
rameter ¥ to the overall retrieval error € for a
simulated test object.
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Figure 3 Confidence behavior (cf.text):
a) &, b) t, ¢) (K,.Ky), for simulated test data
as a function of the steps n iteratively en-
hancing the a priori start values (Kxo. Kyo).



