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Electron microscope images are calenlated to investigate the contrast of small cylindrical and wedge-shaped holes as well as
of spherical inclusions with polynomial eigenstrains in gold films. The computer simulations are carried out by using the
multi-slice method and by assuming a sandwich object structure having different hole diameters or atomic displacements
within subsequent slabs. Diffraction contrast images of the defects — including image aberrations entirely — are compared with
lattice fringe patterns and high-resolution electron micrographs (HREM) to evaluate the possibilities of interpreting the crystal
defeet fine structure. Particularly the variations in the contrast of the defects as well as the distortions in the lattice fringe and
HREM patterns are correlated to both the defect nature and the imaging conditions, demonstrating the phase influence of the

microscope aberrations.

1. Introduction

In previous papers [1-3] diffraction contrast
images and lattice fringe patterns were computer-
simulated to investigate the contrast effects and
the optimum conditions of electron microscope
imaging especially for small hexagonal dislocation
loops and spherical inclusions. The method ap-
plied there consists in combining the calculation
of diffraction contrast amplitudes with the Fourier
transformation to include image aberrations. In
addition, for spherical inclusions with polynomial
eigenstrains the results were compared with analo-
gous calculations using the multi-slice method.
The outward or inward bendings of fringes caused
by the defects were no longer found to unequiv-
ocally prove the defect nature. A comprehensive
analysis of the fringe distortions in combination
with a study of the black—white oscillations in
diffraction contrast, however, should yield infor-
mation on the local defect structure.

The lattice fringe distortions, i.e. shifting, bend-
ing and termination, are shown to be controlled

by the phase differences between bright-field and
dark-field amplitudes. With increasing resolution
the influence of the elastic far-field of the defects
in the micrographs is reduced and the contrast
features are mainly determined by the central de-
fect structure as well as by the imaging conditions.
Therefore the fundamental features of the defect
contrast are maintained even if the microscope
aberrations are large: the fine details, however, are
essentially influenced by through-focusing,

For studying the phase-influencing behaviour
of the microscope in relation to the crystal defect
fine contrast in detail, in this paper the image
calculations of inclusions with polynomial eigen-
strains are refined by using the multi-slice method.
Varying the assumed inner structure of the spheri-
cal inclusion with an invariant and small far-field
the calculations enable the discrimination to be
made between imaging effects and contrast phe-
nomena due to the defect fine structure.

Unlike the calculations for inclusions, multi-
slice image simulations for holes, having circular
cross sections but different border shapes, show
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similar but well distinguishable contrast effects. If
no elastic displacements of the atoms in the ma-
trix surrounding the hole are assumed, contrast
fine structures arise due to Fresnel diffraction at
the border between matrix and vacuum modified
by the shape of the border (cylindrical, wedge- or
crater-shaped). Especially for amorphous objects,
Fresnel fringes occur as black—white contrast fea-
tures parallel to the border which are used to
correct the astigmatism and to align the focus
conditions,

For crystals a striking effect occurs - called
“spillover” in the following — with periodic lattice
features obviously advancing across the border
into the vacuum. The degree and perfection of this
periodic continuation depend on the spatial and
temporal coherence in the microscope. In refs.
[4.5] the “spillover” is discussed as “lateral spread
of lattice information into the region of the Fres-
nel fringes” applying the phase grating approxi-
mation. With the coherence not being explicitly
considered, Fresnel [ringes are utilized to calibrate
the defocus in the HREM. Tanji and Cowley [6]
studied the interaction of electron beams with an
MgO surface. The interpretation of the experi-
ments by computer simulation showed the sensi-
tivity of the electron waves with respect to the
out-of-crystal potential.

The “spillover” of the periodic lattice across
the border of the hole has to be distinguished
from the periodic continuation inherent in the
numerical algorithm of the fast Fourier transform
of the multi-slice simulation procedure. The latter
produces virtual contrast features at the boundary
of the supercells due to the aliasing and truncation
of the finite Fourier transform. Due to the re-
ferred investigation of holes instead of borders at
half-infinite crystals the virtual effects of aliasing
and truncation decrease.

The calculation of bright-field (BF) and dark-
field (DF) diffraction contrast images with lattice
fringe patterns (LF) as well as of high-resolution
micrographs (HREM) can be carried out by the
multi-slice method by using appropriate imaging
parameters and by varying the position of the
objective aperture. Applying the different imaging
modes to compare the contrast effects for small
inclusions with those for holes enables one to

assess the possibilities of interpreting the crystal
defect fine structure with respect to the lateral
spread of lattice information due to the micro-
scope aberrations.

2. Method of computer simulation

The HREM micrographs were calculated by
using a modified multi-slice program [7.8] with
both discrete Fourier transform and convolution
(128 x 128 pixels). Without discrete real-space
sampling the Fourier transform of the projected
potential of each slice is directly evaluated from
the atomic coordinates of the structure model and
the associated atomic scattering amplitude. For a
sufficient accuracy in applying the method to
crystals containing lattice defects with a non-
vanishing elastic far-field the lateral extension of
supercells should be dimensioned to avoid effects
of aliasing and truncation.

Fulfilling these numerical requirements, the
specimen model for the multi-slice calculations is
based on a gold unit cell, which is transformed
into (110) direction and is multiplied by 6 and 9,
respectively, for the new axes within the trans-
formed unit mesh. In (110) projection the face-
centered cubic unit cell with a lattice constant of
0.4079 nm shows a mesh of 0.5768 x 0.4079 nm®
and a slice thickness of Az=0.2884 nm. The
supercell of 6 X 9-Au(110) thus yields an exten-
sion by 3.461 X 3.671 nm®, containing 216 atoms,
whereas the slice thickness does not change. The
specimen model for the multi-slice calculations is
constructed by a variable sequence of perfect and
differently distorted crystal slices in the form of a
sandwich structure. The distorted slabs are gener-
ated thus modifying the perfect supercells either
by removing atoms to produce holes or by displac-
ing atoms according to the elastic strains to de-
scribe inclusions.

For calculating the image contrast of inclusions
the atoms of the 6 X 9-Au(110) supercells are dis-
placed according to the eigenstrains of the ex-
tended Ashby—Brown precipitate given in eq. (10)
of ref. [3]. The elastic displacement field reads
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(e.r(Ro/r)3 for r= R,

[ In(r/Ro)+ ¥ b(r/R)!| ()

fE=3

u(r)=
forr<R,,

with the defect radius R, the constrained strain e,
and the characteristic constants R., ¢ and bj of
the polynomial displacements. For R, = Ry, a =0,
b;=0. besides b, =1 the displacements are re-
duced to that of an Ashby-Brown precipitate, for
R.=0or b_y;=1Dbut a=0, b;=0 the displace-
ments are those of pure dilation or compression
centre. The displacements (1) are continuous for

r= R, if the additional condition,
(Ro/R.)' =aln(R/Ry)+ ¥ b(R./Ry).

> -2 s

is fulfilled.

Otherwise, if condition (2) is not maintained
the additional jump #(r) for r = R_ can be inter-
preted as sliding inclusion or incoherent precipi-
tate.

The general spherical inclusion with continuous
displacements described by egs. (1) and (2) has a

far-field of Ashby—Brown type out of r=R_,
representing polynomial eigenstrains within r <
R.. The strength of the field is determined by e R},
with € > 0 characterizing dilation-type defects (in-
terstitials) and e < 0 compression ones (vacancies).

For the assumed size and strength of the defect
(Ry=1.6 nm, € = 0.03) the local displacements of
the atoms are almost vanishing near the lateral cell
boundaries to fulfill the conditions of periodic
continuation. Five different model slices of Az =
0.288 nm in thickness are sufficient to approxi-
mate the defect structure parallel to the beam
direction. The defect slices are disturbed accord-
ing to eq. (1) as a function of the distance from
the defect centre r — r;, and embedded in perfect
slices. Fig. 1 schematically shows the displace-
ments of a pure dilation centre in inclined parallel
view of the disturbed 6 X 9-Au(110) supercells.
Fig. 1a gives the perfect cell for comparison; figs.
1b-1f show the cells with distances z—z,=
—0.576. —0.288, 0, 0.288 and 0.576 nm between
the centres of cells and the inclusion, respectively.
Atoms which are absent in the projections are at
greater distances from the border of the cell.

For simulating objects containing holes five
differently distorted slices are established, each of
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Tig 1. Inclined (110)-parallel view of the perfect (a) and distorted (b—f) 6 X 9-Au(110) slices for a sandwich object used in multi-slice

tmage calculations of gold foils containing inclusions. Distance between centres of the slices and the inclusion: z —z;=—2 Az (b),

— Az (c), 0(d), Az (e), 2 Az (f); slice thickness Az =0.288 nm, radius of the inclusion R,=1.6 nm, atomic displacements of a pure
dilation centre € = 0.05.
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which corresponds to a perfect supercell having a
cylindrical hole. The diameters used are 2R, =
0.78, 0.88, 1.26, 1.44 and 1.72 nm, i.e. around the
middle of the supercell 8, 14, 24, 30 and 42 atoms
are removed, respectively. Varying combinations
of these slices enables one to investigate holes of
different structures in beam direction. Fig. 2
schematically shows the (110) projections of two
generated slabs whose hole diameters are 2R, =
0.88 nm in (a) and 2R, = 1.44 nm in (b). Further-
more, the different sandwich structures used for
the image simulations are presented in figs. 2¢c-2e
corresponding to a parallel-sided cylindrical hole,
a double-wedge-shaped and a crater-shaped one,
respectively. Image calculations of thin objects
containing holes with their diameters decreasing
from top to bottom of the foil (cf. fig. 2e) have not
revealed remarkable differences from respective
calculations with the diameters increasing in beam
direction. Thus the investigations are restricted to
the above three cases schematically shown, which
can be discriminated by the image contrast.

The multi-slice recursion was carried out by
including approximately 7000 beams for accelerat-
ing voltages of V=100 or 400 kV. For the con-
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Fig. 2. Schematic drawing of sandwich objects for multi-slice
calculations of gold foils with holes: (110) projection of 6 9-
Au(110) slices with diameters 2R, = 0.88 nm (a), 1.44 nm (b);
slice sequences of a parallel-sided cylindrical hole (c), double-
wedge-shaped (d) and crater-shaped (e) hole.

trast transfer function a lens aberration of C, =1
mm is assumed. preferring the Gauss defocus (4
=) or the Scherzer defocus (A =48 nm for 400
kV, A= 62 nm for 100 kV). The coherence condi-
tions are varied by choosing a defocus spread of
2<8f<35 nm and assuming the angular diver-
gence of the incident beam in the range of 0.5 <
ap < 1.5 mrad. The microscope imaging condi-
tions are adjusted by the position and diameter
a(hkl) of the aperture in the plane of the diffrac-
tion pattern. Thus, for bright-field (BF) diffrac-
tion contrast the aperture «(000) is centered at the
transmitted beam (000) and chosen smaller than
the reciprocal 111-lattice distance a(000)=2.1
nm ™ .. For the dark-field (DF) diffraction contrast
the beam considered is tilted into the optical axis
of the microscope and the aperture a(111) =21
nm™" is placed around it. Two-beam lattice fringes
(LF) are calculated using a displaced aperture
in the middle between (000) and (111) with the
diameter being larger than the 111-reciprocal
lattice vector a(1/2, 1/2, 1/2) =25 nm™.
Three-beam lattice fringes (3B) are calculated with
a(5/6.5/6,0)=3 nm~' including (000), (111)
and (111) reflexes, whereas high-resolution micro-
graphs are simulated with «(000)=35 nm~' in-
cluding all beams up to (002).

Irrespective of the position and diameter of the
aperture in the imaging process the excitation in
electron diffraction is described by the pole vector
p characterizing the incident beam with respect to
the Brillouin zone axis within the diffraction plane.
For p = 1(hkl) the reflex (hkl) and all the corre-
sponding reflexes positioned at the Ewald sphere
are in the exact Bragg excitation. The simulation
of nearly two-beam cases demands the excitation
of the (111) systematic row in such a manner that
only (000) and (111) reflexes are strongly excited.
Here the tilt p= %(7, 7, 20), approximately nor-
mal to the excited 111 row, is applied.

3. Spherical inclusions with polynomial eigen-
strains

Figs. 3 and 4 show calculated BF, DF, LF and
3B patterns of spherical inclusions according to
egs. (1) and (2) for different polynomial eigen-

strains
close-s
(000},

with re
in fig.

of the
excitat
and L
V=10
(for I
a(1 /2,
ferent

focus

(A=6
3a and
assurme




ntrast
al axis
y=2.1
ringes
erture
th the
procal
nm ™’
d with

(111)
miCro-
=i

of the
tion in
vector
sect to
Lplane.
- corre-
sphere
mlation
3Tation
er that
cited.

s Dor-

€9

K. Scheerschmidi, R. Hillebrand / EM images of holés and spherical inclusions 31

BRLE SRR RS

Fig. 3. Multi-slice image caleulations of spherical inclusions with different polynomial defect eigenstrains (R, =0, a =0, b_ y=1(a);

R.=12 Ry, a=164, by=—05 (b); R.=Ry, a=200. b_,=1 (c)) and différent imaging conditions (BF: A =0, «(000) = 2.1

am ': DF: 4=0, o(111)=21 nm™ % LF: 4=0, «(1/2,1/2.1/2)=25 nm™*; 3BG: A=0. a(5/6,5/6,0)=3 nm~"; 3BS:

A=62nm, «(5/6.5/6.0)=3 am™'). Parameters: ¥'=100 kV, C,=1 mm, e=[110], Ry=1.6 nm, e=005, r=21 Az, Az=0.28%
nm, g = (000).

strains. While in fig. 3 the beam is chosen in
close-symmetrical incidence e=[110] with p=
[000], in fig. 4 the tilt is used of p= (7, 7, 20)
with respect to the [110] Brillouin zone axis. Thus,
in fig. 4 the (111) reflex and no other strong reflex
of the perfect Au lattice is in the very Bragg
excitation. The imaging conditions for the BF, DF
and LF patterns are those given in section 2, i.e.
F=100kV.C.=1mm, 4 =0, &(000)=2.1nm '
(for BF), a(111)=21 nm ! (for DF), and
a(1/2,1/2,1/2)=2.5 nm~! (LF). Both the dif-
ferent 3B patterns are calculated in the Gauss
focus (A=0, 3BG) and in the Scherzer focus
(4 =62 nm, 3BS) with «(000) =3 nm~". In figs.
32 and 4a the inclusion (R, = 1.6 nm, ¢ =0.05) is
assumed to be a pure dilation centre (R, =0,

a=0, b_y=1, b,=0). Figs. 3b and 4b demon-
strate the case of polynomial eigenstrain with a
quadratic term and a compensating logarithmic
one (R.=12R,, a=164, b .= -3, b;=0),
whereas in figs. 3¢ and 4c a 1/7* dependence is
chosen (R, =Ry, =200, b_,=1, b=0). In all
cases the foil thickness is 1=21 Az =6 nm, the
depth position is 7, =t /2.

The displacements used for the multi-slice
calculations of figs. 3 and 4 are schematically
drawn in fig. 5. The curves in fig. 5 give the
amount of the displacements which are spherically
symmetrical, fig. 5a represents the pure dilation
centre, whereas (b) and (c) show the quadratic and
1/r* dependences, respectively. For the compari-
son with the calculations of the previous paper [3].
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Fig 4. As fig. 3 with p = (7. 7, 20), i.e. two-beam case excitation of (000)— (117).

curve (d) in addition displays the eigenstrains with
vanishing stresses. The distance between the per-
pendicular dashed lines in fig. 5 represents the
slice thickness used in the multi-slice calculations.
The small changes of the displacement field out-

side the five slices applied for the defect descrip-
tion can be neglected in the computations.

For the sake of simplicity and as the contrast is
not sensitive to small parameter changes the three
cases of figs. 3 and 4 are chosen exactly fulfilling

' Re
15 "R

Fig. 5. Schematic drawing of the amount of the radial displacements |u| for a spherical inclusion with polynomial eigenstrains
(Ry=1.6 nm, e=0.05, Az=02885 nm): R,=0, a=0, b_;=1 (a); R.=12R,, a=164. by =—05 (b): R.=R;. a=200.
b_>=1(c): R.=Ry, a=0, by=1(d).
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condition (2) to avoid a sliding inclusion. To
guarantee a stress-free surface of the inclusion
another condition has to be fulfilled, which has
not yet explicitly been discussed and means p(R_)
=0 at the surface of the inclusion for the body
density p introduced in eq. (6) of ref. [3]. This
additional condition is only approximately satis-
fied here for cases (b) to (d). The different poly-
nomial eigenstrains charactenze different energy
contents of the inclusion; suppressing terms of
r~* and r~? ie. b_y=b_,=0, yield non-singu-
lar defects. The contrast effects discussed mn the
following allow one to discriminate singular dis-
placement fields from non-singular emes but they
do not seem sensitive enough to allow a sufficient
discrimination between, for instance. cases (b) to
id).

The bright-field contrast (BF) for central inci-
dence (fig. 3) is centro-symmetric: the ulted object
(fig. 4) generates black—white contrast features of
two-fold symmetry. Here, the pure dilation centre
produces a bright spot-like contrast within the
dark background, whereas due to the alternating
displacement field in (b) and (c) a ring-shaped
contrast may be expected. In the dark-field dif-
fraction contrast (DF) always black—white figures
occur with the black—white vector being either
antiparallel (figs. 3a, 4a) or parallel to the excited
diffraction reflex. The uniform contrast shows a
small number of fine details only for central inci-
dence as well as for the pure dilation centre and
for tilting. In the lattice fringe patterns the
black—white features according to the DF are
maintained in the background. The most signifi-
cant fringe distortions are detected in fig. 3b.

The relatively strong displacement gradient of
the pure dilation centre prevents the satisfactory
visualization of the lattice fringes in the 3-beam
images. Because of the asymmetrical imaging con-
ditions, the defect appears as an asymmetric
arrangement of bright dots. Unlike this, cases (b)
and (c) of figs. 3 and 4 better visualize the lattice
fringes and the atomic columns, respectively. Thus
the defects occur as brighter spots in the Gauss
focus and as darker ones under the Scherzer imag-
ing condition. The borders of the defects are
strongly facetted. For the tilted crystalline speci-
men containing the inclusion (fig. 4, 3B cases) the

computation does not provide locally specific con-
trast features.

4. Influence of microscope aberrations on the
HREM imaging of holes

Perforated gold films with well defined holes
and lattice defects can be produced by vacuum
deposition on specially prepared substrates of
sodium chloride, starting from epitaxial islands of
gold being well preoriented by a pulsed arc de-
position technique and generating the defects due
to the incomplete coalescence of islands [9]. Fig. 6
presents experimental BF diffraction contrast mi-
crographs (a, b) and LF patterns (c, d) showing an
[001]-oriented gold film of an average thickness of
about 12 nm and containing holes. Annealing the
gold film in vacuum for 110 min at 280°C (see
fig. 6b) causes the holes of the as-deposited film of
fig. 6a to shrink or to grow. In the places of small
holes (see arrow) mobile dislocations will occur
indicating a closure failure of the crystal lattice
around the hole. Figs. 6c and 6d show {200}
lattice fringe micrographs (JEM100C at 100 kV,
tilted illumination, 4 beams) of the small holes
indicated by arrows in fig. 6a after some minutes
of electron irradiation [10]; here the lattice mis-
match is also obvious and the additional contrast
fringes are characterized by dislocation symbols.
Around the holes in the BF images one or two
thickness extinction contours occur which depend
on the different excitation conditions of figs. 6a
and 6b, respectively. The position of the thickness
contours slightly asymmetric with respect to the
border indicates an inclination angle varying with
the azimuth; weak-beam images, not shown here,
proved a steep descent of the border for the ap-
proximately double-wedge-shaped holes. Owing to
the imaging conditions Fresnel fringes are sup-
pressed in the BF contrast. In figs. 6c and 6d the
LF patterns show lattice fringes within the border
of the hole which either arise from the transport of
the material due to the electron irradiation, or
which have to be interpreted as a virtual effect due
to image aberrations. As to investigating whether
the imaging process can generate virtual LF pat-
terns of such a kind, in the following calculations
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Fig. 7. HREM contrast simulations of double-wedge-shaped holes in 6 X 9-Au(110) cells (N =11, Az =0.288 nm, A5 =0). (a) 6/ =3
nm, ap =13 mrad: (b) 8f =2 nm, ag=1.5 mrad; (¢) 8f =2 nm, ay=0.5 mrad; (d) 3f =5 nm, ag=0.5 mrad; (a—c) V=100 kV,
Co=1mm, Ag=62nm, a=3nm " (d) F=400kV, C.=1 mm, A;=48 nm, ¢=7.5nm .

are discussed of contrast effects at holes in (110)- Different hole profiles (double-wedge-shaped,
zold films for the simplified model objects as parallel-sided cylinder, crater-shaped) are mod-
referred to in section 2. A subsequent paper is elled by an appropriate slice sequence of 6 X 9-
ender preparation taking into account the exact Au(110) cells with a varying number of atoms
sxperimental parameters. inside a cylindrical region being removed (for de-

Fig. 8. HREM contrast simulations of double-wedge-shaped holes i 6 X 9-Au(110) cells (N =14, Az =0.288 nm, 45 =0). (a) 8/ =5
nm, ay =15 mrad; (b) 8f =2 nm, az=1.5 mrad; (¢) §f =2 nm, az=0.5 mrad; (d) §f =5 nm, ag=0.5 mrad; (a-c) ¥=100 kV,
C=lmm Ac=62nam. a=Snm % (d) ¥=400kV, C, =1 mm, Ac =48 nm. a=7.5nm .
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ag=1.5 mrad: (b) 8§f =2 nm, ap=1.5 mrad; (c) 8f =2 nm, a;= 0.5 mrad; (d) 8/ =35 nm, ag=0.5 mrad: (a-c) =100 kV, C,=1

=

) cells (N=11. Az=0288 nm, 45=10). (a) §f=5 nm,

mm, Ag=62nm, a=5nm % (d) ¥=400kV, C,=1 mm, Ag=48 nm. a=7.5nm .

tails see section 2). In figs. 7-9 image simulations
are discussed of double-wedge-shaped and cylin-
drical holes. For accelerating voltages of V=100
and 400 kV the coherence and the defocus are
varied (Gauss focus A=0 and Scherzer focus
according to the acceleration voltage). The figures
demonstrate the possibility of discriminating dif-
ferent shapes and sizes of the holes analyzing the
contrast as well as the “spillover” of the fringe
patterns into the inner region of the hole — de-
pending on the coherence.

The slice sequence, assumed for the contrast
calculations in fig. 7, describes a double-wedge-
shaped hole. For an accelerating voltage of 100 kV
the specimen thickness r=11 Az = 3.2 nm corre-
sponds to 3§, (£,= extinction distance of 000-
beam) for the central Laue case; for V=400 kV
the extinction distance increases and r=11 Az
corresponds with £,/2. The degree of coherence,
which is determined by the defocus spread &f
(chromatic aberration) and the illumination aper-
ture ay (spatial coherence), 1s varied so as to
comprehensively study the resolution and periodic
continuation. In the right columns (d) of figs. 7 to
S standard characteristics of a medium-voltage
HREM device (V=400 kV, C,=1 mm, 8f=5

nm, ag = 0.5 mrad) are assumed. In the calculated
micrographs the hole in the crystal is imaged as a
bright area. For a specimen thickness of £,/2,
which corresponds to a diameter of 1.5 nm be-
tween the hole edges in the model (cf. fig. 2), dark
extinction fringes appear. Improving the coherence
(see figure captions) of the 100 kV microscope
(8f=5 nm, ay=1.5 mrad (a) to §f=2 nm, ay=
0.5 mrad (b)) will cause a fine structure within the
hole region. While for a low coherence (a) the
defocus dependence of the contrast is weak. for
(b) and (c) the Scherzer focus (A =62 nm) and the
Gaussian focus provide different “in-hole™ strue-
tures. For the Scherzer focus (top) of (b) and (¢)
periodic and symmetrical bright arrangements
arise, but they do not reproduce the distances of
the gold lattice. They are influenced by the de-
focus, i.e. by the contrast transfer function, as well
as by the wedge-shaped border of the hole (cf. fig.
9).

The 400 kV micrographs clearly show that the
gold lattice can be imaged with reversed contrast
because of the improved resolution. Compared
with the bulk, the wedge region of the hole ap-
pears brightened, especially for A = 0. The central
hole area is not structured: the point resolution
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and the reduced oscillations of the CTF for 400
kV obviously allow one to differentiate between
the bulk contrast, the wedge contrast and the
“in-hole™ signal.

In fig. 8 the computations, discussed above, are
carried out for an increased crystal thickness (7=
1l4Az=4 nm, ie. r=¢§, for V=100 kV and
1= 3£, for V=400 kV) under identical imaging
conditions. At an accelerating voltage of 100 kV
the dark £,/2 rings are surrounded by bright
extinction fringes for r=§, (see A=0 in figs.
8a—8c). Because of contrast normalization applied
here the bulk lattice is not visible in the images.
The “in-hole” interference patterns (A =62 nm
(b. ¢)) are comparable to those of fig. 7.

The 400 kV micrograph in the Scherzer focus
exhibits a very good contrast of the perfect gold
lattice, whereas the hole and the wedge-shaped

region are more or less unstructured. For A =0 no
bulk contrast is formed, but the decreasing speci-
men thickness at the inclined hole border provides
patterns that are interpretable in terms of the
interatomic distances.

A cylindrical hole may be modelled, if the
three-dimensional specimen applied to the con-
trast simulations is built up of identical slices of
the described 6 x 9-Au(110) type (see fig. 2). The
diameter of the hole, assumed in fig. 9, is 2R, =
144 nm; it is oriented parallel to the electron
beam. Perpendicular crystal borders improve the
possibility of distinguishing effects of the speci-
men thickness (extinction contrast) from those of
the imaging system (contrast transfer). In general,
the holes appear bright in the HREM micro-
graphs. The dark fringes of the wedge-shaped holes
in figs. 7 and 8, typical of t=§£,/2, are fading.

Fig. 10. HREM contrast simulations of holes in 6 x9-Au(110) cells with different hole profiles: double-wadseshuced 140 SiimSeey
(b), crater-shaped (c). Parameters: ¥ =11, Az =0.288 nm; F'=100 kV. C,=1 mm. 5f =2 nm. az=05mmd 3, =5 o S-=4
HREM: a=5nm~!, BF: a=2.1 nm "~
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The other contrast features of the 100 kV patterns
are more or less maintained, excluding the hole
contrast for a very high coherence (fig, 8c: 8f=2
nm, ag=0.5 mrad). The crystal lattice seems to
continue in the central hole region. The correct
interatomic distances are reproduced for the
Scherzer focus.

In the 400 kV patterns of fig. 9 the gold lattice
is clearly resolved. The periodic continuation,
typical of the strongly oscillating 100 kV contrast
transfer function for a high coherence, is not ob-
served. The increased point resolution and the
specific damping envelope prevent inner-hole
pseudo-structures from occurring.

Multi-slice simulations of electron microscope
images on the basis of extended pseudo-cells with
defects enable a wide range of resolution to be
studied, including also the diffraction contrast
technique. In fig. 10 HREM images (a(000) =5
nm™'), and the bright-field contrast (&(000) = 2.1
nm ') of three different hole models are discussed
for an accelerating voltage of 100 kV. The hole
profiles are varied from double-wedge over cylin-
drical- to crater-shaped ones (top to bottom), i.e.
the upper two rows are related to figs. 7c and 9c,
respectively. The crater-shaped model of the above
described set of 6 X 9-Au(110) slices is established.
but the slices are arranged according to the con-
tinuously decreasing hole diameter. There are no
significant contrast variations between wedge-
shaped and crater-like holes in HREM as well as
in diffraction contrast. For the specimen thickness
assumed (=11 Az=32 nm, ie = 3/4¢,) the
projection effect of EM imaging is still dominat-
ing. For the non-cylindrical models (top and bot-
tom row of fig. 10) the dark £,/2 extinction
fringes, e.g. black rings around a bright centre, are

observed for a wide range of defocus values, espe-
cially in the bright-field contrast. The “in-hole”
patterns of the HREM micrographs for the
Scherzer focus (1) demonstrate the periodic con-
tinuation. For perpendicular borders of the hole
this interference process in the brightened circular
background seems to supplement the resolved gold
lattice by a virtual structure.
The contrast phenomenon of Fresnel fringes
parallel to and outside the border of amorphous
HREM specimens is modified here. While for
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quasi-continuous amorphous objects the contrast
transfer function more or less exclusively de-
termines the image within the coherence limita-
tions, for crystalline samples the periodicity “spills
over” into the vacuum. The point spread function,
which is the real-space Fourier transform of the
CTF, transfers the lattice information into the
space out of the crystal. The up-to-date 400 kV
high-resolution microscopes damp the effect of
periodic continuation, because the improved
transfer characteristic reduces the aberrations of
the 1/d spectrum to be resolved.

5. Conclusions

Contrast simulations using the multi-slice al-
gorithm are carried out to investigate electron
microscope imaging of spherical inclusions with
polynomial eigenstrains as well as of gold films
containing holes. According to the imaging condi-
tions, e.g. size and position of the objective aper-
ture. BF and DF diffraction contrast images are
studied and compared with calculated LF patterns
and HREM micrographs. While the diffraction
contrast images show more or less unstructured
and symmetrical spot-like patterns in BF and
black-white features in DF, the LF and HREM
images generally display distorted fringes with re-
sidual DF contrast.

The calculations clearly demonstrate the
phase-influencing behaviour of image aberrations
which result in a lateral spread of lattice informa-
tion into the region of Fresnel fringes, and its
influence on the crystal-defect fine contrast over-
whelming the information about the local defect
structure. Nevertheless, the analysis of diffraction
contrast features in combination with lattice fringe
distortions should yield information on the local
defect structure; especially the different poly-
nomial eigenstrains can be correlated directly with
contrast variations and the fringe modifications.

For small circular holes the contrast of extinc-
tion contours can be related to the shape and
inclination of the border of the holes. Fresnel
fringes, being undistorted black—white fringes at
amorphous specimen boundaries, are modified in
crystal structure imaging. The influence of the
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