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Within the local-density approximation, the interlayer binding and the electronic properties of graphite and
‘‘graphitic’’ Si have been determined. For graphite, the optimized equilibrium lattice constant agrees well with
the experimental value. The role of 2pz orbitals (p states! turned out to be twofold: contributing a major part
to the binding of C atoms within basal planes, and giving a minor contribution in the form of the overlay of 2pz

orbitals, which leads to weaker interlayer binding. The interlayer binding attributed to the interaction of C-C
atoms in different layers yields the calculated binding energy as a function of the lattice constants and is
applied to fit an additional Lennard-Jones-type empirical potential to be included in classical molecular-
dynamics simulations. In contrast to that, the calculated energy pathways for ‘‘graphitic’’ Si show an extended
region of minima within the range ofa53.84 Å and forc varying from 5.50 to 6.68 Å having two lower
levels, which indicates chemisorption and physical absorption. The obtained electronic density distribution
demonstrates that the atoms in ‘‘graphitic’’ Si tend to form a structure with metal-like electron distributions.
Nevertheless, a Lennard-Jones potential with restricted validity may be fitted to describe the weak long-range
behavior, too.

I. INTRODUCTION

Graphite as a prototype layer material has been studied
extensively due to its technological importance. Natural
graphite exists in the forms of a hexagonal structure~Bernal
structure!1 and a rhombohedral structure.2 Both forms of
graphite consist of carbon atoms arranged in planar hexago-
nal networks. The stacking sequences of the carbon atom
layers for hexagonal and rhombohedral structures are of
ABAB . . . andABCABC . . . types, respectively. The ex-
perimental results have shown that a given graphite sample
usually contains 80% of the hexagonal structure, 14% of the
rhombohedral structure, and 6% of disordered graphite,2,3

and no rhombohedral structure has been detected in the iso-
lated form without hexagonal components.

It is well known that graphite shows a difference in the
binding character within and between the layers of carbon
atoms. The spacing between the layers is larger than the C-C
bond-length distance in the layers. The strong binding within
the layers is described by thesp2 (2s-2px-2py) hybridiza-
tion of atomic orbitals (s states!, and the weak interlayer
binding is derived from the nonhybridized 2pz orbitals (p
states! perpendicular to the graphitic planes. This results
from the stacking of the graphene planes~threesp2 hybrids
forming a honeycomb structure! and the interlayer bindings
due topz overlap as calculated, for instance, using the self-
consistent-field pseudopotential local-density approximation
~LDA !.4,5 The resulting band structure including bondings
and p states and antibondings* and p* states shows va-
lence and conduction bands, respectively. Theoretical studies
of the electronic properties of hexagonal graphite4–12 have
demonstrated that normal to the basal planes a slight or no
dispersion of thes bands leads to a two-dimensional char-

acter of graphite although thep bands show some disper-
sion. The weak interactions between ‘‘graphitic’’ planes
modify the ideal two-dimensional situation, which leads to a
zero-gap semiconductor13 and creates a semimetal. The in-
terlayer interaction forces are commonly attributed to a van
der Waals type of dynamics interaction between the electrons
on adjacent sheets of carbon. However, within the LDA of
the density-functional theory~DFT!,14–17 the contribution of
the exchange correlation is of short-range type. Therefore,
the interlayer binding would be poorly described by LDA if
the interlayer binding in graphite is dominated by such short-
range interactions. A previous calculation11 using the LDA
and the linearized augmented-plane-wave method really
gives a poor result as to the interlayer cohesive energy and
the interlayer distance compared with the experimental val-
ues. However, two LDA calculations18,19 with accurate ex-
pressions for the kinetic-energy functional and carefully de-
signed pseudopotentials and making use of a large number of
plane waves recently showed that the obtained interlayer dis-
tances and cohesive energies may agree well with the experi-
mental values. Thus it is confirmed that a careful LDA cal-
culation can properly describe the interlayer binding in
graphite, providing the proper balance between the attractive
van der Waals interaction and other contributions to the co-
hesive energy. The obtained interlayer binding energies have
been successfully fitted to the form of a Morse function,
which agrees well with the experimental results, but failed to
fit a function of the Lennard-Jones~LJ! type. In addition, at
ambient pressure or at hydrostatic pressures of 5 and 10 GPa,
the electronic structure of graphite has been calculated self-
consistently using the method of full-potential linear-muffin-
tin orbitals.20
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As elements of group IV, both Si and C have the same
valence electron number and a similar distribution of the
outermost electrons for the free atoms. Therefore, to a certain
extent, Si and C should have similar properties with respect
to their chemistry and physics, as well as crystal structure.
Carbon and silicon with diamond structure are among the
materials most studied and best understood in science and
technology. However, to our knowledge, there is no experi-
mental report as to the existence of ‘‘graphitic’’ Si. From the
theoretical point of view and based on the LDA with a
pseudopotential, the ‘‘graphitic’’ Si has been investigated
and regarded as a hypothetical material with a ratio of lattice
constantsc/a similar to that of graphite. The theoretical in-
vestigations lead to the conclusion that ‘‘graphitic’’ Si can-
not exist due to its relatively weak binding, with a higher
energy than those of the diamond phase. Thus the existence
of ‘‘graphitic’’ Si would require a high negative pressure.6 A
recent theoretical investigation of the planarity of the aro-
matic stage of two-dimensional Si and Ge layers showed that
Si and Ge prefer to form the corrugated aromatic stage.21

The present work is concerned at first with the interlayer
bindings in graphite using total energy pseudopotential cal-
culations. The investigation of the graphitic phase is limited
to its hexagonal structure as the rhombohedral graphite oc-
cupies only a small part~15%! of natural graphite. The re-
sults of the calculations as to graphite show that the 2pz
orbitals (p states! contribute not only to the interlayer bind-
ing, but also to the C-C binding within the layers. The inter-
layer binding is attributed to the interaction between the C
atoms in different basal planes. Using these properties a
functionality of the LJ type is fitted. It is the basis for con-
structing a modified empirical potential, which reflects the
short-range forces by a bond-order-type interaction and
which shows a smooth transition to the present LJ fit. Details
of this new potential will be reported in a forthcoming paper.
To understand the similarities of and differences between C
and Si, the hypothetical material, ‘‘graphitic’’ Si, is also in-
vestigated in terms of the interlayer binding and electronic
structures. Although the calculations demonstrate the impos-
sibility of a stable ‘‘graphitic’’ Si phase, the functionality
proven between energy and lattice constant allows the fit of
the long-range interaction of the LJ type.

The paper is organized as follows: The method of the
calculation is described briefly in Sec. II. The calculated re-
sults of graphite and ‘‘graphitic’’ Si are analyzed and dis-
cussed in Sec. III, including~1! the energy minimum path-
ways of interlayer binding,~2! electronic densities, and~3!
fitting the calculated results to a Lennard-Jones function. Fi-
nally, the conclusions in Sec. IV discuss the applicability of
the results to the refinement of empirical potentials.

II. METHOD OF CALCULATION

The calculations were performed using the pseudopoten-
tial method within the LDA. The optimized, norm-
conserving, nonlocal pseudopotentials generated by theQc
tuning method22,23 were used in the Kleinman-Bylander
form.24 The ab initio calculations were carried out using the
computer codeCASTEP; the details are given elsewhere.25

The crystallographic structures of the hexagonal ‘‘graphitic’’
phase belong to theP63 /mmc space group. The constructed

FIG. 1. Two unit cells of theP63 /mmc ‘‘graphitic’’ structures
characterizinga andb type atoms and the~110! planes considered
in the projections of electron densities.

FIG. 2. The interaction minimum energy for graphite C and
‘‘graphitic’’ Si as function of the lattice parameterc for optimum
a0: DFT database simulated for the optimized lattice constanta0

~C: 2.44 Å, Si: 3.86 Å) andc varying ~continuous curves! and for
best Lennard-Jones potential fit~dashed curves!.

FIG. 3. Interaction energy minimum pathway for ‘‘graphitic’’
Si: The energy as a function of the lattice constantc using different
lattice constantsa as the parameter.
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primitive cell includes four atoms~two atoms for each ‘‘gra-
phitic’’ plane and two planes per cell, see Fig. 1!. The elec-
tronic wave functions are expanded in sets with a plane-wave
basis up to an energy cutoff of 670 eV for C and 400 eV for
Si. To understand the convergence of the calculated proper-
ties with respect to the number ofk points, total-energy cal-
culations for graphite witha052.44 Å, c056.62 Å, and for
‘‘graphitic’’ Si with a053.86 Å andc056.68 Å were per-
formed using 14, 20, 40, and 56 symmetrizedk points gen-
erated by the Monkhorst-Pack scheme.26 The calculations
using 56k points were regarded to be completely accurate.
The discrepancies of the calculated total energy for using 14,
20, and 40 points are 83, 3, and 3 meV for graphite, and 21,
2, and 2 meV for ‘‘graphitic’’ Si, respectively. That means
that using 20 symmetrizedk points, as done in the present
paper, may provide sufficiently the desirable accuracy.

III. RESULTS AND DISCUSSION

A. Local energy minimum pathways of interlayer binding

In hexagonal ‘‘graphitic’’ structures, there are two kinds
of nonidentical carbon~or silicon! atoms, denoted bya and
b as sketched in Fig. 1. Thea atoms have neighbors as
counterparts immediately in adjacent layers, whereasb at-
oms are in juxtaposition. Thus the contribution ofa atoms
and b ones to the interlayer binding is different. The inter-
layer interaction energy within the area with onea and one
b atom can be used to describe the interlayer binding. It can
directly be obtained from the calculated total energies by
E ib5(Estruc2E`)/2. Factor 2 indicates that each primitive
cell contains two ‘‘graphitic’’ planes. Here,Estruc is the total
energy of the primitive cell with differentc anda values.E`

is the total energy obtained from the configuration with an
optimizeda value and largec values, whereasc/a must be
chosen as large as to enable the interaction between the basal
planes to be neglected. In the present work, the total energy
changes by less than 0.03 meV/atom if the graphite lattice
constanta is kept at the optimized value of 2.44 Å and the

lattice constantc is varied from 12.0 Å to 15.0 Å. For ‘‘gra-
phitic’’ Si, the total energy change is less than 0.04 meV/
atom if c is varied from 16.0 Å to 20.0 Å witha fixed at the
optimized value of 3.86 Å. That means that the interaction
energies between the layers may be neglected, if the values
of the lattice constantsc are larger than 12.0 Å for graphite
and 16.0 Å for ‘‘graphitic’’ Si. Therefore it is reasonable to
make use of the configurations witha`52.44 Å and c`

515.0 Å, anda`53.86 Å andc`520.0 Å to calculate the
E` for graphite and ‘‘graphitic’’ Si, respectively.

The interaction energies as functions of the lattice con-
stantsc at fixed a0, where the latter is always optimized
beforehand, are used to illustrate the interlayer binding~cf.
Fig. 2, solid lines only; the dashed curves are the finally
fitted LJ potentials as discussed in Sec. III C below!. The
energy as a function of the lattice constantc shows a differ-
ent behavior for graphite~C in Fig. 2! and ‘‘graphitic’’ Si ~Si
in Fig. 2!. The optimuma0 is chosen to be equal to the
correspondinga` as justified below. To evaluate the mini-
mum configurations accurately, in the DFT calculations the
lattice constantc was changed with a small step size of
0.01 Å around the energy minima. Very small discontinui-
ties in the total energy curves arise at some points far from
the minimum energy in graphite and far from the extended
region of minima in ‘‘graphitic’’ Si. Though large cutoffs
Ecut5700 eV and 400 eV for C and Si, respectively, were
used, the effect of numerical noise with the largest relative
error estimated to be 1024 cannot be cancelled, but should be
minimized as analyzed in Ref. 19. Therefore, those discon-
tinuous points have simply been crossed out.

For graphite, only one minimum occurs atc056.62 Å
~cf. the curve marked by C in Fig. 2!, which does not change
remarkably for varyinga. The calculation of the interaction
energy for different lattice constantsa proves that the curve
with a0 is always the minimum energy pathway with respect
to the parametera and for varyingc within the interval from
5.75 Å to 15.0 Å.

TABLE I. Comparison of the calculated lattice constantsa, c, and interlayer binding energiesE ib for
graphite and ‘‘graphitic’’ Si with experimental and other theoretical results. The values marked by * indicate
that thea, c, andc/a were extracted from the minimum of physical absorption. The values in parentheses
indicate that the calculations were performed with a fixedc/a ratio obtained from the experiment.

Graphite ‘‘Graphitic’’ Si
Source a(Å) c(Å) c/a E ib ~eV/layer! a(Å) c(Å) c/a E ib ~eV/layer!

Present 2.44 6.62 2.71 0.050 4.07 4.95 1.22 0.35
3.86* 6.68* 1.73* 0.21*

Ref. 18 2.451 6.70 2.734 0.050
Ref. 19 2.45 6.60 2.69 0.040
Ref. 21 2.49 3.86
Ref. 6 2.47 6.73 ~2.726! 3.90 10.62 ~2.726!
Ref. 28~Expt.! 2.461 6.709 2.726
Ref. 29 5.60 0.22
Ref. 30 2.47 6.74 2.725 0.12
Ref. 31 2.45 6.87 2.802 0.06
Ref. 32 2.450
Ref. 11 2.459 6.828 2.773 0.28–0.16
Ref. 33~Expt.! 0.046
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In contrast to the results for graphite, in ‘‘graphitic’’ sili-
con ~marked by Si in Fig. 2! an extended area of minima
occurs fromc0855.50 Å toc056.68 Å with a053.86 Å be-
ing optimized. Though the energy only reveals a difference
of 2 meV within this interval there are two flat minima,
occurring atc056.68 Å andc0855.50 Å. This result is very
different from that obtained by Yin and Cohen6 who as-
sumed that ‘‘graphitic’’ Si has the same value ofc/a
52.726 as has graphite. To discuss the behavior of the en-
ergy minima, in Fig. 3 the minimum interaction energy path-
way to optimizea is shown for ‘‘graphitic’’ Si. The pathway
shows the energy minima as functions of thec variation with
different lattice constantsa used as parameters. In the case of
graphite, as mentioned above, only one very stable minimum
occurs; thus the respective curve need not be discussed. For
a<a053.86 Å, always an extended area of minima occurs
having the deepest minimum atc056.68 Å. However, with
increasing lattice constantsa the minimum atc0855.50 Å in
Fig. 2 becomes deeper and the band is broadened. Fora
.a053.86 Å and with increasinga the overall energy in-
creases and the minimum atc056.68 Å disappears. The
minimum at c0855.50 Å in Fig. 2 becomes deeper and
sharper. Furthermore, the calculations show that the absolute
minimum occurs ata54.07 Å and c0954.95 Å with the
lowest minimum energy of 107.34 eV/atom.

While the stable minimum in graphite atc056.62 Å in-
dicates that there is an energy barrier separating other inter-
actions from that between the basal planes, the minimac0 ,
c08 , and c09 in Si are not well separated. The minimum at
c0954.95 Å reaches its absolutely deepest level fora
54.07 Å within the investigated configurations correspond-
ing to the bond length in the diamond structure, which will
be discussed below considering the electronic densities. Thus
for the hypothetical ‘‘graphitic’’ Si the minimum pathways
of the interlayer interaction energy can be described fromc

5` to ccrit56.50 Å by the curve witha053.86 Å. As c
becomes smaller thanccrit56.50 Å the energy minimum
pathway will follow the curve with the lowest energy as
shown in Fig. 3. Therefore, those two minima shown byc0

and c09 may be interpreted in terms of chemisorption atc09

54.95 Å and of physical absorption atc056.68 Å. That no
higher barrier occurs between the physical absorption and
the chemisorption means that the ‘‘graphitic’’ structure with
a large interlayer spacing in Si is meaningless. To verify this
conclusion, using the same pseudopotential and 60 symme-
trized k points, we also optimized Si configurations in the
diamond structure. The obtained lowest energy is 107.94 eV/
atom. Comparing the experimental difference of the cohesive
energy of 0.025 eV/atom between the diamond and graphite
~see the unpublished report of Brewer27 for the cohesive en-
ergy at 0 K!, the much higher energy difference of 0.60
eV/atom for Si indicates that the ‘‘graphitic’’ structure is
meaningless, too. The critical valueccrit may be used to
separate short and long-range interactions as well as to limit
the validity of the potential fit before structural changes oc-
cur.

The experimental values of the lattice constantsa0 andc0
for graphite6 were measured to be 2.461 Å and 6.709 Å,
respectively. In the present work, the theoretical equilibrium
lattice constantsa0 andc0 for graphite were determined di-
rectly from the configuration with the lowest energy. Con-
sidering for ‘‘graphitic’’ Si the energy pathway witha0
53.86 Å, which is the curve with the overall lowest energy
fulfilling the restrictions of stability discussed above, the lat-
tice constantsa053.86 Å andc056.68 Å were extracted
from the physical absorption minimum as given in Fig. 2. All
attained equilibrium lattice constants together with the ex-
perimental and other theoretical values are listed in Table I.
Especially for graphite, there is a good agreement with the
calculated valuesa052.44 Å andc056.62 Å.

FIG. 4. Charge density distribution~eV/Å3! within the ~110! plane in graphite for~a! all electrons of occupied states,~b! all occupieds
states, and~c! all occupiedp states (a052.44 Å,c056.62 Å).
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The interlayer binding energiesE ib , obtained from the
calculated lowest energy byE ib5(E low2E`)/2, are also
listed in Table I. The interlayer binding energy of 0.05 eV/
layer for graphite agrees well with the experimental and the-
oretical values in Refs. 19 and 21. This indicates that our
result reasonably well reflects the weak interlayer interaction
of the van der Waals type in graphite, too. For ‘‘graphitic’’
Si and using the energy value ata053.86 Å and c0
56.68 Å the interlayer binding energy of 0.21 eV/layer is
obtained. Though stronger than that in graphite, the binding
energy still indicates that the interlayer interaction is a weak
one. The binding energy of 0.35 eV/layer ata053.86 Å and
c0954.95 Å indicates that the interlayer interaction at the
minimum of chemisorption is stronger than that at the mini-
mum of physical absorption. A detailed discussion will be
given in Sec. III B considering the electronic density distri-
bution as a function of the lattice parameters.

B. Electronic densities

Figure 4 shows resulting electronic structures of the low-
est energy configuration within the~110! planes of graphite.
In Fig. 4~a! the character of stronger covalent bonds between
the C-C atoms within the basal planes and weaker interac-
tions between the C atoms in different basal planes is mani-
fested evidently. The lower electronic density of the order of
0.08 eV/Å3, occurring in the region between the basal
planes, indicates that the interaction between the interplane C
atoms is weak. In order to understand the binding features of
the 2pz orbitals of C atoms within the basal plane and be-
tween the basal planes, the electronic densities of alls states
and of all p states have been used@cf. Figs. 4~b! and 4~c!,
respectively# to illustrate their contributions to the binding.
The electron density distributions of alls states shown in
Fig. 4~b! really present features of thesp2 hybridized 2s,
2px , and 2py atomic orbitals within the basal planes. How-
ever, the role of allp-state electrons shown in Fig. 4~c! is
twofold: ~i! providing ap-bond binding between all C atoms
within the basal plane, which is added to the originals
bonds, strongly correlating to the C atoms, and~ii ! contrib-
uting to the interlayer binding due to a superposition of the
orginal 2pz orbitals. The lower density of the order of
0.02 eV/Å3, present in the region between the basal planes
as shown in Fig. 4~c!, indicates that the interplane C-C bind-
ing of different layers is weaker than the in-plane binding.
This explains why the interlayer binding is a weak interac-
tion in graphite.

The distribution of electronic densitiy of ‘‘graphitic’’ Si
within the ~110! planes is shown in Fig. 5, witha0
53.86 Å andc57.2 Å, 6.68 Å, and 5.5 Å in Figs. 5~a!,
5~b!, and 5~c!, respectively. In Figs. 5~a! and 5~b! the elec-
tronic density between the interplane Si atoms is lower than
that within the basal planes, indicating that the binding of
interplane Si-Si atoms is weaker than that within the basal
planes. The lower density of the order of 0.07 eV/Å3 and
0.10 eV/Å3, occurring in the regions between the basal
planes, is very similar to that of C in Fig. 4~a!. It indicates
that the interlayer interaction is weak, too. Nevertheless, the
density increases withc decreasing from 7.20 Å toc0
56.68 Å. This explains why the minimum atc056.68 Å
may be regarded as the optimum value of the weak interlayer
interactions, i.e., the minimum of the physical absorption.

FIG. 5. Electronic density distribution~eV/Å3! within the ~110!
plane in ‘‘graphitic’’ Si for a53.86 Å andc57.2 Å ~a!, 6.68 Å
~b!, and 5.5 Å~c!.
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The electronic density of the order of 0.26 eV/Å3 occurring
in Fig. 4~c! indicates that the chemical bond is formed be-
tween the interplane Si atoms and the interlayer interaction is
not a weak one. The binding between the in-plane Si atoms
in ‘‘graphitic’’ Si becomes weaker, whereas the interlayer
binding becomes stronger. In all calculated density patterns
of Fig. 5 and in contrast to Fig. 4, we cannot clearly display
the distribution of electron states, because the occupied or-
bitals in the ‘‘graphitic’’ phase cannot be distinguished.
However, from the obtained lowest-energy configuration at
a54.07 Å andc0954.95 Å, we may find that the interlayer
distancec09/252.475 Å is close to the in-plane bond length
of 2.35 Å. For this configuration, the valence electron distri-
bution of Si atoms does not only contribute to the in-plane
Si-Si bonds, but also to the interplane Si-Si bonds. Consid-
ering that the neighbor number of each Si atom exceeds four
and that the order of the electronic density between inter-
plane Si atoms becomes close to that between in-plane Si
atoms, one can conclude that the distribution of the electrons
of the Si atoms in a ‘‘graphitic’’ structure will tend to give a
metal-like electron distribution.

C. Fitting the calculated results to a Lennard-Jones function

As dissussed above, the obtained interlayer binding en-
ergy for graphite~50.0 meV/layer! is in good agreement with
the experimental value~46 meV/layer! and theoretical
ones18,19 ~cf. Table I!. In Ref. 19, the obtained interlayer
interaction energies were successfully fitted to the form of a
Morse function without considering the difference between
the a andb atoms. Here, the interlayer binding is attributed
to the interaction between the C atoms in different basal
planes, which is regarded to be of the van der Waals type and
may be described by the LJ functionEc2c54e@(s/R i j)

12

2(s/R i j)
6#. Then, within the range of the basal plane~in-

cluding onea atom and oneb atom!, the interlayer binding
energyE ib ~in the unit of eV/layer! is fitted to the function
E ib5( i5a,b( j51,74e@(s/R i j)

12
2(s/R i j)

6#. Here, R i j indi-
cates the distance between theith C atom in the reference
basal plane and thej th C atom in the nearest-neighbor basal
plane, where a maximum of seven nearest-neighbor atoms
within the adjacent planes is assumed. The method of simu-
lated annealing was used to fit the theoretical values to the LJ
function. The optimized parameterse ands are 0.001 88 eV
and 3.3264 Å, respectively. Figure 2~dashed curves! shows
the comparison between the calculated data points and the
fitted LJ potential; they agree fairly well. The fitted LJ form
can also be used to handle the long-range interaction of C
atoms within the validity of thesp2 hybridization.

For ‘‘graphitic’’ Si, the situation is very different from
that in graphite due to the existence of at least two local
minima. However, based on the analysis of the energy path-

way and the electronic densities, the obtained data for allc
.ccrit56.50 Å with a053.86 Å as shown in Fig. 2 de-
scribe the long-range behavior and are used in the simulated
annealing procedure to fit the weak long-range potential. Ap-
plying the restricted fit procedure one gets a well-fitted LJ
potential withe50.0171 eV ands53.3362 Å for extending
the empirical potential to the long-range region, too.

IV. CONCLUSIONS

Based on the interlayer interaction minimum energy lev-
els and the electronic structures obtained from total-energy
pseudopotential calculations, the most important results can
be summarized as follows.

~1! In graphite, the role of the 2pz orbitals (p states! of
the C atoms is twofold: First, the 2pz orbitals make a con-
tribution to the in-plane C-atom binding, providing a stron-
ger C-atom binding than does the combination with contri-
butions of thesp2 hybridization (s states!. Second, there is
an additional contribution to the interlayer binding in the
form of an overlap of 2pz orbitals. The interlayer binding is
attributed to the interaction of interplane C atoms, and is
fitted to the form of a LJ function. The good agreement be-
tween the theoretical results and the experimental data dem-
onstrates that a LJ potential function can describe the inter-
layer interaction appropriately well.

~2! Compared to graphite, the binding between the in-
plane Si atoms in ‘‘graphitic’’ Si becomes weaker, whereas
the interlayer binding becomes stronger. The interlayer inter-
action is no longer of the van der Waals type due to chemical
bonds formed between the in-plane Si atoms. The resulting
metal-like electron distribution means that it is impossible
for Si to exist in the ‘‘graphitic’’ phase. Nevertheless, a re-
stricted LJ potential fit enables one to describe long-range
interactions, too.

For including the interlayer forces into empirical poten-
tials it is necessary to parametrize a suitably chosen short-
range potential and to smoothly combine both the short-
range and the LJ potentials at a common cutoff value.
Different empirical potentials are tested and fitted, and a new
short-range parametrization has been found. Respective de-
tails, the comparison with bond-orderlike analytical
developments,34 and the test of applicability especially for
interacting surfaces as, e.g., relevant for wafer bonding,35

will be published in a forthcoming paper.
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